• 1853 Citations
  • 17 h-Index
1987 …2020

Research output per year

If you made any changes in Pure these will be visible here soon.

Fingerprint Dive into the research topics where Hiroshi Toyama is active. These topic labels come from the works of this person. Together they form a unique fingerprint.

  • 5 Similar Profiles

Network Recent external collaboration on country level. Dive into details by clicking on the dots.

Research Output

  • 1853 Citations
  • 17 h-Index
  • 101 Article
  • 3 Review article
  • 1 Chapter
  • 1 Letter

Decision Support System for Lung Cancer Using PET/CT and Microscopic Images

Teramoto, A., Yamada, A., Tsukamoto, T., Imaizumi, K., Toyama, H., Saito, K. & Fujita, H., 01-01-2020, Advances in Experimental Medicine and Biology. Springer, p. 73-94 22 p. (Advances in Experimental Medicine and Biology; vol. 1213).

Research output: Chapter in Book/Report/Conference proceedingChapter

  • 1 Citation (Scopus)

    Evaluation of PiB visual interpretation with CSF Aβ and longitudinal SUVR in J-ADNI study

    Japanese Alzheimer’s Disease Neuroimaging Initiative, 01-02-2020, In : Annals of Nuclear Medicine. 34, 2, p. 108-118 11 p.

    Research output: Contribution to journalArticle

    Open Access
  • Investigation of pulmonary nodule classification using multi-scale residual network enhanced with 3DGAN-synthesized volumes

    Onishi, Y., Teramoto, A., Tsujimoto, M., Tsukamoto, T., Saito, K., Toyama, H., Imaizumi, K. & Fujita, H., 01-06-2020, In : Radiological Physics and Technology. 13, 2, p. 160-169 10 p.

    Research output: Contribution to journalArticle

  • Multiplanar analysis for pulmonary nodule classification in CT images using deep convolutional neural network and generative adversarial networks

    Onishi, Y., Teramoto, A., Tsujimoto, M., Tsukamoto, T., Saito, K., Toyama, H., Imaizumi, K. & Fujita, H., 01-01-2020, In : International Journal of Computer Assisted Radiology and Surgery. 15, 1, p. 173-178 6 p.

    Research output: Contribution to journalArticle

  • 4 Citations (Scopus)

    Automated Pulmonary Nodule Classification in Computed Tomography Images Using a Deep Convolutional Neural Network Trained by Generative Adversarial Networks

    Onishi, Y., Teramoto, A., Tsujimoto, M., Tsukamoto, T., Saito, K., Toyama, H., Imaizumi, K. & Fujita, H., 01-01-2019, In : BioMed Research International. 2019, 6051939.

    Research output: Contribution to journalArticle

  • 12 Citations (Scopus)