5′-O-Masked 2′-deoxyadenosine analogues as lead compounds for hepatitis C virus (HCV) therapeutic agents

Masahiro Ikejiri, Takayuki Ohshima, Keizo Kato, Masaaki Toyama, Takayuki Murata, Kunitada Shimotohno, Tokumi Maruyama

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

On the basis of our previous study on antiviral agents against the severe acute respiratory syndrome (SARS) coronavirus, a series of nucleoside analogues whose 5′-hydroxyl groups are masked by various protective groups such as carboxylate, sulfonate, and ether were synthesized and evaluated to develop novel anti-hepatitis C virus (HCV) agents. Among these, several 5′-O-masked analogues of 6-chloropurine-2′-deoxyriboside (e.g., 5′-O-benzoyl, 5′-O-p-methoxybenzoyl, and 5′-O-benzyl analogues) were found to exhibit effective anti-HCV activity. In particular, the 5′-O-benzoyl analogue exhibited the highest potency with an EC50 of 6.1 μM in a cell-based HCV replicon assay. Since the 5′-O-unmasked analogue (i.e., 6-chloropurine-2′-deoxyriboside) was not sufficiently potent (EC50 = 47.2 μM), masking of the 5′-hydroxyl group seems to be an effective method for the development of anti-HCV agents. Presently, we hypothesize two roles for the 5′-O-masked analogues: One is the role as an anti-HCV agent by itself, and the other is as a prodrug of its 5′-O-demasked (deprotected) derivative.

Original languageEnglish
Pages (from-to)6882-6892
Number of pages11
JournalBioorganic and Medicinal Chemistry
Volume15
Issue number22
DOIs
Publication statusPublished - 15-11-2007

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Molecular Medicine
  • Molecular Biology
  • Pharmaceutical Science
  • Drug Discovery
  • Clinical Biochemistry
  • Organic Chemistry

Cite this