TY - JOUR
T1 - A burden of fluid, sodium, and chloride due to intravenous fluid therapy in patients with respiratory support
T2 - a post-hoc analysis of a multicenter cohort study
AU - the AMOR-VENUS study group
AU - Sakuraya, Masaaki
AU - Yoshihiro, Shodai
AU - Onozuka, Kazuto
AU - Takaba, Akihiro
AU - Yasuda, Hideto
AU - Shime, Nobuaki
AU - Kotani, Yuki
AU - Kishihara, Yuki
AU - Kondo, Natsuki
AU - Sekine, Kosuke
AU - Morikane, Keita
AU - Yamamoto, Ryohei
AU - Hayashi, Yoshihiro
AU - Abe, Takayuki
AU - Takebayashi, Toru
AU - Maeda, Mikihiro
AU - Shiga, Takuya
AU - Furukawa, Taku
AU - Inaba, Mototaka
AU - Fukuda, Sachito
AU - Kurahashi, Kiyoyasu
AU - Murakami, Sarah
AU - Yasumoto, Yusuke
AU - Kamo, Tetsuro
AU - Sakuraya, Masaaki
AU - Yano, Rintaro
AU - Hifumi, Toru
AU - Horiguchi, Masahito
AU - Nakayama, Izumi
AU - Nakane, Masaki
AU - Ota, Kohei
AU - Yatabe, Tomoaki
AU - Yoshida, Masataka
AU - Murata, Maki
AU - Fujii, Kenichiro
AU - Ishii, Junki
AU - Tanimoto, Yui
AU - Takase, Toru
AU - Masuyama, Tomoyuki
AU - Sanui, Masamitsu
AU - Kawaguchi, Takuya
AU - Kumasawa, Junji
AU - Uenishi, Norimichi
AU - Tsujimoto, Toshihide
AU - Tatsumichi, Takakiyo
AU - Inoue, Akihiko
AU - Aoyama, Bun
AU - Okazaki, Moemi
AU - Fujimine, Takuya
AU - Suzuki, Jun
N1 - Funding Information:
We would like to thank all our colleagues from the participating hospitals in the AMOR-VENUS study who performed the extensive data entry and Editage (www.editage.com ) for English language editing. The AMOR-VENUS Study Group: Hideto Yasuda, Ryohei Yamamoto, Yoshihiro Hayashi, Yuki Kotani, Yuki Kishihara, Natsuki Kondo, Kosuke Sekine, Nobuaki Shime, Keita Morikane, Takayuki Abe, Toru Takebayashi, Mikihiro Maeda, Takuya Shiga, Taku Furukawa, Mototaka Inaba, Sachito Fukuda, Kiyoyasu Kurahashi, Sarah Murakami, Yusuke Yasumoto, Tetsuro Kamo, Masaaki Sakuraya, Rintaro Yano, Toru Hifumi, Masahito Horiguchi, Izumi Nakayama, Masaki Nakane, Kohei Ota, Tomoaki Yatabe, Masataka Yoshida, Maki Murata, Kenichiro Fujii, Junki Ishii, Yui Tanimoto, Toru Takase, Tomoyuki Masuyama, Masamitsu Sanui, Takuya Kawaguchi, Junji Kumasawa, Norimichi Uenishi, Toshihide Tsujimoto, Kazuto Onozuka, Shodai Yoshihiro, Takakiyo Tatsumichi, Akihiko Inoue, Bun Aoyama, Moemi Okazaki, Takuya Fujimine, Jun Suzuki, Tadashi Kikuchi, Satomi Tone, Mariko Yonemori, Kenji Nagaoka, Naomi Kitano, Masaki Ano, Ichiro Nakachi, Ai Ishimoto, Misa Torii, Junichi Maehara, Yasuhiro Gushima, Noriko Iwamuro, and RNs of Intensive Care Unit of International University of Health and Werfare Mita Hospital for their support with data collection (Kameda Medical Center, Hiroshima University Hospital, Jichi Medical University Saitama Medical Center, Japanese Red Cross Musashino Hospital, Sakai city medical center, Fujita Health Univresity, Japanese Red Cross Society Wakayama medical center, JA Hiroshima General Hospital, Kagawa University Hospital, Kochi Medical School Hospital, Japanese Red Cross Kyoto Daiichi Hospital, Tohoku University Hospital, Nerima Hikarigaoka Hospital, Saiseikai Kumamoto hospital, Okinawa Chubu Hospital, Shiroyama Hospital, Okayama Saiseikai General Hospital, Nagasaki University Hospital, Saiseikai Utsunomiya Hospital, Mitsui Memorial Hospital, International University of Health and Werfare Mita Hospital, and Yamagata University Hospital). Hideto Yasuda, Ryohei Yamamoto, Yoshihiro Hayashi, Yuki Kotani, Yuki Kishihara, Natsuki Kondo, Kosuke Sekine, Nobuaki Shime, Keita Morikane, Takayuki Abe, Toru Takebayashi, Mikihiro Maeda, Takuya Shiga, Taku Furukawa, Mototaka Inaba, Sachito Fukuda, Kiyoyasu Kurahashi, Sarah Murakami, Yusuke Yasumoto, Tetsuro Kamo, Masaaki Sakuraya, Rintaro Yano, Toru Hifumi, Masahito Horiguchi, Izumi Nakayama, Masaki Nakane, Kohei Ota, Tomoaki Yatabe, Masataka Yoshida, Maki Murata, Kenichiro Fujii, Junki Ishii, Yui Tanimoto, Toru Takase, Tomoyuki Masuyama, Masamitsu Sanui, Takuya Kawaguchi, Junji Kumasawa, Norimichi Uenishi, Toshihide Tsujimoto, Kazuto Onozuka, Shodai Yoshihiro, Takakiyo Tatsumichi, Akihiko Inoue, Bun Aoyama, Moemi Okazaki, Takuya Fujimine, Jun Suzuki, Tadashi Kikuchi, Satomi Tone, Mariko Yonemori, Kenji Nagaoka, Naomi Kitano, Masaki Ano, Ichiro Nakachi, Ai Ishimoto, Misa Torii, Junichi Maehara, Yasuhiro Gushima, Noriko Iwamuro
Publisher Copyright:
© 2022, The Author(s).
PY - 2022/12
Y1 - 2022/12
N2 - Background: Fluid creep, including fluids administered as drug diluents and for the maintenance of catheter patency, is the major source of fluid intake in critically ill patients. Although hypoxemia may lead to fluid restriction, the epidemiology of fluid creep in patients with hypoxemia is unclear. This study aimed to address the burden due to fluid creep among patients with respiratory support according to oxygenation status. Methods: We conducted a post-hoc analysis of a prospective multicenter cohort study conducted in 23 intensive care units (ICUs) in Japan from January to March 2018. Consecutive adult patients who underwent invasive or noninvasive ventilation upon ICU admission and stayed in the ICU for more than 24 h were included. We excluded the following patients when no fluids were administered within 24 h of ICU admission and no records of the ratio of arterial oxygen partial pressure to fractional inspired oxygen. We investigated fluid therapy until 7 days after ICU admission according to oxygenation status. Fluid creep was defined as the fluids administered as drug diluents and for the maintenance of catheter patency when administered at ≤ 20 mL/h. Results: Among the 588 included patients, the median fluid creep within 24 h of ICU admission was 661 mL (25.2% of the total intravenous-fluid volume), and the proportion of fluid creep gradually increased throughout the ICU stay. Fluid creep tended to decrease throughout ICU days in patients without hypoxemia and in those with mild hypoxemia (p < 0.001 in both patients), but no significant trend was observed in those with severe hypoxemia (p = 0.159). Similar trends have been observed in the proportions of sodium and chloride caused by fluid creep. Conclusions: Fluid creep was the major source of fluid intake among patients with respiratory support, and the burden due to fluid creep was prolonged in those with severe hypoxemia. However, these findings may not be conclusive as this was an observational study. Interventional studies are, therefore, warranted to assess the feasibility of fluid creep restriction. Trial registration UMIN-CTR, the Japanese clinical trial registry (registration number: UMIN 000028019, July 1, 2017).
AB - Background: Fluid creep, including fluids administered as drug diluents and for the maintenance of catheter patency, is the major source of fluid intake in critically ill patients. Although hypoxemia may lead to fluid restriction, the epidemiology of fluid creep in patients with hypoxemia is unclear. This study aimed to address the burden due to fluid creep among patients with respiratory support according to oxygenation status. Methods: We conducted a post-hoc analysis of a prospective multicenter cohort study conducted in 23 intensive care units (ICUs) in Japan from January to March 2018. Consecutive adult patients who underwent invasive or noninvasive ventilation upon ICU admission and stayed in the ICU for more than 24 h were included. We excluded the following patients when no fluids were administered within 24 h of ICU admission and no records of the ratio of arterial oxygen partial pressure to fractional inspired oxygen. We investigated fluid therapy until 7 days after ICU admission according to oxygenation status. Fluid creep was defined as the fluids administered as drug diluents and for the maintenance of catheter patency when administered at ≤ 20 mL/h. Results: Among the 588 included patients, the median fluid creep within 24 h of ICU admission was 661 mL (25.2% of the total intravenous-fluid volume), and the proportion of fluid creep gradually increased throughout the ICU stay. Fluid creep tended to decrease throughout ICU days in patients without hypoxemia and in those with mild hypoxemia (p < 0.001 in both patients), but no significant trend was observed in those with severe hypoxemia (p = 0.159). Similar trends have been observed in the proportions of sodium and chloride caused by fluid creep. Conclusions: Fluid creep was the major source of fluid intake among patients with respiratory support, and the burden due to fluid creep was prolonged in those with severe hypoxemia. However, these findings may not be conclusive as this was an observational study. Interventional studies are, therefore, warranted to assess the feasibility of fluid creep restriction. Trial registration UMIN-CTR, the Japanese clinical trial registry (registration number: UMIN 000028019, July 1, 2017).
UR - http://www.scopus.com/inward/record.url?scp=85140776919&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85140776919&partnerID=8YFLogxK
U2 - 10.1186/s13613-022-01073-x
DO - 10.1186/s13613-022-01073-x
M3 - Article
AN - SCOPUS:85140776919
SN - 2110-5820
VL - 12
JO - Annals of Intensive Care
JF - Annals of Intensive Care
IS - 1
M1 - 100
ER -