TY - JOUR
T1 - A novel method for live imaging of human airway cilia using wheat germ agglutinin
AU - Nakamura, Ryosuke
AU - Katsuno, Tatsuya
AU - Kishimoto, Yo
AU - Kaba, Shinji
AU - Yoshimatsu, Masayoshi
AU - Kitamura, Morimasa
AU - Suehiro, Atsushi
AU - Hiwatashi, Nao
AU - Yamashita, Masaru
AU - Tateya, Ichiro
AU - Omori, Koichi
N1 - Publisher Copyright:
© 2020, The Author(s).
PY - 2020/12/1
Y1 - 2020/12/1
N2 - Multiciliated epithelial cells in the airway are essential for mucociliary clearance. Their function relies on coordinated, metachronal and directional ciliary beating, appropriate mucus secretion and airway surface hydration. However, current conventional methods for observing human airway ciliary movement require ciliated cells to be detached from airway tissues. Determining the directionality of cilia is difficult. We developed a novel method to stain airway epithelial cilia to observe their movement without releasing ciliated cells. Human tracheae were obtained from patients (n = 13) who underwent laryngectomies to treat malignancies or swallowing disorders. The tracheae were treated with fluorescently labeled wheat germ agglutinin, which interacts with the acidic mucopolysaccharides present on the cilia. Epithelial surfaces were observed using an epi-fluorescence microscope equipped with a water-immersion objective lens and a high-speed camera. Ciliary movement was observable at 125 fps (13/13 samples). Ciliated cells in close proximity mostly exhibited well-coordinated ciliary beats with similar directionalities. These findings indicated that wheat germ agglutinin renders ciliary beats visible, which is valuable for observing human airway ciliary movements in situ.
AB - Multiciliated epithelial cells in the airway are essential for mucociliary clearance. Their function relies on coordinated, metachronal and directional ciliary beating, appropriate mucus secretion and airway surface hydration. However, current conventional methods for observing human airway ciliary movement require ciliated cells to be detached from airway tissues. Determining the directionality of cilia is difficult. We developed a novel method to stain airway epithelial cilia to observe their movement without releasing ciliated cells. Human tracheae were obtained from patients (n = 13) who underwent laryngectomies to treat malignancies or swallowing disorders. The tracheae were treated with fluorescently labeled wheat germ agglutinin, which interacts with the acidic mucopolysaccharides present on the cilia. Epithelial surfaces were observed using an epi-fluorescence microscope equipped with a water-immersion objective lens and a high-speed camera. Ciliary movement was observable at 125 fps (13/13 samples). Ciliated cells in close proximity mostly exhibited well-coordinated ciliary beats with similar directionalities. These findings indicated that wheat germ agglutinin renders ciliary beats visible, which is valuable for observing human airway ciliary movements in situ.
UR - http://www.scopus.com/inward/record.url?scp=85090086303&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85090086303&partnerID=8YFLogxK
U2 - 10.1038/s41598-020-71049-z
DO - 10.1038/s41598-020-71049-z
M3 - Article
C2 - 32879324
AN - SCOPUS:85090086303
SN - 2045-2322
VL - 10
JO - Scientific reports
JF - Scientific reports
IS - 1
M1 - 14417
ER -