TY - JOUR
T1 - A quality assurance for respiratory gated proton irradiation with range modulation wheel
AU - Yasui, Keisuke
AU - Shimomura, Akira
AU - Toshito, Toshiyuki
AU - Tanaka, Kenichiro
AU - Ueki, Kumiko
AU - Muramatsu, Rie
AU - Katsurada, Masaki
AU - Hayashi, Naoki
AU - Ogino, Hiroyuki
N1 - Publisher Copyright:
© 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
PY - 2019/1
Y1 - 2019/1
N2 - The purpose of this study was to provide periodic quality assurance (QA) methods for respiratory-gated proton beam with a range modulation wheel (RMW) and to clarify the characteristics and long-term stability of the respiratory-gated proton beam. A two-dimensional detector array and a solid water phantom were used to measure absolute dose, spread-out Bragg peak (SOBP) width and proton range for monthly QA. SOBP width and proton range were measured using an oblique incidence beam to the lateral side of a solid water phantom and compared between with and without a gating proton beam. To measure the delay time of beam-on/off for annual QA, we collected the beam-on/off signals and the dose monitor-detected pulse. We analyzed the results of monthly QA over a 15-month period and investigated the delay time by machine signal analysis. The dose deviations at proximal, SOBP center and distal points were −0.083 ± 0.25%, 0.026 ± 0.20%, and −0.083 ± 0.35%, respectively. The maximum dose deviation between with and without respiratory gating was −0.95% at the distal point and other deviations were within ±0.5%. Proximal and SOBP center doses showed the same trend over a 15-month period. Delay times of beam-on/off for 200 MeV/SOBP 16 cm were 140.5 ± 0.8 ms and 22.3 ± 13.0 ms, respectively. Delay times for 160 MeV/SOBP 10 cm were 167.5 ± 15.1 ms and 19.1 ± 9.8 ms. Our beam delivery system with the RMW showed sufficient stability for respiratory-gated proton therapy and the system did not show dependency on the energy and the respiratory wave form. The delay times of beam-on/off were within expectations. The proposed QA methods will be useful for managing the quality of respiratory-gated proton beams and other beam delivery systems.
AB - The purpose of this study was to provide periodic quality assurance (QA) methods for respiratory-gated proton beam with a range modulation wheel (RMW) and to clarify the characteristics and long-term stability of the respiratory-gated proton beam. A two-dimensional detector array and a solid water phantom were used to measure absolute dose, spread-out Bragg peak (SOBP) width and proton range for monthly QA. SOBP width and proton range were measured using an oblique incidence beam to the lateral side of a solid water phantom and compared between with and without a gating proton beam. To measure the delay time of beam-on/off for annual QA, we collected the beam-on/off signals and the dose monitor-detected pulse. We analyzed the results of monthly QA over a 15-month period and investigated the delay time by machine signal analysis. The dose deviations at proximal, SOBP center and distal points were −0.083 ± 0.25%, 0.026 ± 0.20%, and −0.083 ± 0.35%, respectively. The maximum dose deviation between with and without respiratory gating was −0.95% at the distal point and other deviations were within ±0.5%. Proximal and SOBP center doses showed the same trend over a 15-month period. Delay times of beam-on/off for 200 MeV/SOBP 16 cm were 140.5 ± 0.8 ms and 22.3 ± 13.0 ms, respectively. Delay times for 160 MeV/SOBP 10 cm were 167.5 ± 15.1 ms and 19.1 ± 9.8 ms. Our beam delivery system with the RMW showed sufficient stability for respiratory-gated proton therapy and the system did not show dependency on the energy and the respiratory wave form. The delay times of beam-on/off were within expectations. The proposed QA methods will be useful for managing the quality of respiratory-gated proton beams and other beam delivery systems.
UR - http://www.scopus.com/inward/record.url?scp=85060055791&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85060055791&partnerID=8YFLogxK
U2 - 10.1002/acm2.12526
DO - 10.1002/acm2.12526
M3 - Article
C2 - 30597762
AN - SCOPUS:85060055791
SN - 1526-9914
VL - 20
SP - 258
EP - 264
JO - Journal of applied clinical medical physics
JF - Journal of applied clinical medical physics
IS - 1
ER -