TY - JOUR
T1 - A subset of cone bipolar cells expresses the Na+ channel SCN2A in the human retina
AU - Kawai, Fusao
AU - Ohkuma, Mahito
AU - Horiguchi, Masayuki
AU - Ichinose, Hiroshi
AU - Miyachi, Ei ichi
N1 - Publisher Copyright:
© 2020 Elsevier Ltd
PY - 2021/1
Y1 - 2021/1
N2 - Some bipolar cells in the human retina are known to express voltage-gated Na+ channels. However, it is unclear which types of channels are expressed, and whether Na+ channel expression is limited to specific types of bipolar cells. In the present study, we examined the types of voltage-gated Na+ channels expressed in human bipolar cells and the morphology of bipolar cells with voltage-gated Na+ currents. To investigate the expression of voltage-gated Na+ channels in human bipolar cells, we examined whether Na+ channel transcripts could be detected in single bipolar cells using the reverse transcription polymerase chain reaction (RT-PCR) technique. The voltage-gated Na+ current was recorded from isolated bipolar cells using the patch-clamp recording technique. Types of bipolar cells that have the Na+ currents were investigated by analyzing their morphology after staining with Lucifer yellow. Using RT-PCR, the SCN2A Na+ channel was detected in 5 of 6 isolated bipolar cells. This suggests that a subset of human bipolar cells expresses the SCN2A Na+ channel. Under voltage-clamp conditions, depolarizing voltage steps induced a fast transient inward current in cone bipolar cells with axon terminal boutons that stratified at the ON layer, which includes the stratum 3, 4, and 5 of the inner plexiform layer (IPL, n = 2/11 cells). The fast transient inward current of isolated bipolar cells was blocked by 1 μM of tetrodotoxin (TTX), a voltage-gated Na+ channel blocker. No fast transient inward current was recorded with axon terminals that stratify at the OFF layer, which includes stratum 1 and 2 of the IPL (n = 4). Thus, a subset of ON cone bipolar cells at least expresses the putative voltage-gated Na+ channel SCN2A in the human retina. The Na+ channels in the bipolar cells may serve to amplify the release of neurotransmitter, glutamate, when membrane potential is rapidly depolarized and thereby selectively accelerating light responses.
AB - Some bipolar cells in the human retina are known to express voltage-gated Na+ channels. However, it is unclear which types of channels are expressed, and whether Na+ channel expression is limited to specific types of bipolar cells. In the present study, we examined the types of voltage-gated Na+ channels expressed in human bipolar cells and the morphology of bipolar cells with voltage-gated Na+ currents. To investigate the expression of voltage-gated Na+ channels in human bipolar cells, we examined whether Na+ channel transcripts could be detected in single bipolar cells using the reverse transcription polymerase chain reaction (RT-PCR) technique. The voltage-gated Na+ current was recorded from isolated bipolar cells using the patch-clamp recording technique. Types of bipolar cells that have the Na+ currents were investigated by analyzing their morphology after staining with Lucifer yellow. Using RT-PCR, the SCN2A Na+ channel was detected in 5 of 6 isolated bipolar cells. This suggests that a subset of human bipolar cells expresses the SCN2A Na+ channel. Under voltage-clamp conditions, depolarizing voltage steps induced a fast transient inward current in cone bipolar cells with axon terminal boutons that stratified at the ON layer, which includes the stratum 3, 4, and 5 of the inner plexiform layer (IPL, n = 2/11 cells). The fast transient inward current of isolated bipolar cells was blocked by 1 μM of tetrodotoxin (TTX), a voltage-gated Na+ channel blocker. No fast transient inward current was recorded with axon terminals that stratify at the OFF layer, which includes stratum 1 and 2 of the IPL (n = 4). Thus, a subset of ON cone bipolar cells at least expresses the putative voltage-gated Na+ channel SCN2A in the human retina. The Na+ channels in the bipolar cells may serve to amplify the release of neurotransmitter, glutamate, when membrane potential is rapidly depolarized and thereby selectively accelerating light responses.
KW - Bipolar cell
KW - Human
KW - Na channel
KW - Ophthalmology
KW - Patch-clamp
KW - Physiology
KW - Psychology
KW - Retina
UR - http://www.scopus.com/inward/record.url?scp=85092625764&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85092625764&partnerID=8YFLogxK
U2 - 10.1016/j.exer.2020.108299
DO - 10.1016/j.exer.2020.108299
M3 - Article
C2 - 33068627
AN - SCOPUS:85092625764
SN - 0014-4835
VL - 202
JO - Experimental Eye Research
JF - Experimental Eye Research
M1 - 108299
ER -