TY - JOUR
T1 - Absence of BRINP1 in mice causes increase of hippocampal neurogenesis and behavioral alterations relevant to human psychiatric disorders
AU - Kobayashi, Miwako
AU - Nakatani, Toshiyuki
AU - Koda, Toshiaki
AU - Matsumoto, Ken Ichi
AU - Ozaki, Ryosuke
AU - Mochida, Natsuki
AU - Takao, Keizo
AU - Miyakawa, Tsuyoshi
AU - Matsuoka, Ichiro
N1 - Funding Information:
We thank Ms. M. Tonosaki, Ms. S. Matsuoka, Ms. N. Makihata, Ms. M. Nakamura and Ms. A. Ninomiya for technical assistance. The authors are grateful to Mr. S. Bayley for correcting their use of language. This study was supported by JSPS KAKENHI Grant Number 23300135, 20300126, Grant-in-Aid for Scientific Research on Innovative Areas (Comprehensive Brain Science Network), and Integrative Brain Research (IBR-shien) from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan.
PY - 2014/2/14
Y1 - 2014/2/14
N2 - Background: We have previously identified BRINP (BMP/RA-inducible neural-specific protein-1, 2, 3) family genes that possess the ability to suppress cell cycle progression in neural stem cells. Of the three family members, BRINP1 is the most highly expressed in various brain regions, including the hippocampus, in adult mice and its expression in dentate gyrus (DG) is markedly induced by neural activity. In the present study, we generated BRINP1-deficient (KO) mice to clarify the physiological functions of BRINP1 in the nervous system. Results: Neurogenesis in the subgranular zone of dentate gyrus was increased in BRINP1-KO mice creating a more immature neuronal population in granule cell layer. The number of parvalbumin expressing interneuron in hippocampal CA1 subregion was also increased in BRINP1-KO mice. Furthermore, BRINP1-KO mice showed abnormal behaviors with increase in locomotor activity, reduced anxiety-like behavior, poor social interaction, and slight impairment of working memory, all of which resemble symptoms of human psychiatric disorders such as schizophrenia and attention-deficit/hyperactivity disorder (ADHD). Conclusions: Absence of BRINP1 causes deregulation of neurogenesis and impairments of neuronal differentiation in adult hippocampal circuitry. Abnormal behaviors comparable to those of human psychiatric disorders such as hyperactivity and poor social behavior were observed in BRINP1-KO mice. These abnormal behaviors could be caused by alteration of hippocampal circuitry as a consequence of the lack of BRINP1.
AB - Background: We have previously identified BRINP (BMP/RA-inducible neural-specific protein-1, 2, 3) family genes that possess the ability to suppress cell cycle progression in neural stem cells. Of the three family members, BRINP1 is the most highly expressed in various brain regions, including the hippocampus, in adult mice and its expression in dentate gyrus (DG) is markedly induced by neural activity. In the present study, we generated BRINP1-deficient (KO) mice to clarify the physiological functions of BRINP1 in the nervous system. Results: Neurogenesis in the subgranular zone of dentate gyrus was increased in BRINP1-KO mice creating a more immature neuronal population in granule cell layer. The number of parvalbumin expressing interneuron in hippocampal CA1 subregion was also increased in BRINP1-KO mice. Furthermore, BRINP1-KO mice showed abnormal behaviors with increase in locomotor activity, reduced anxiety-like behavior, poor social interaction, and slight impairment of working memory, all of which resemble symptoms of human psychiatric disorders such as schizophrenia and attention-deficit/hyperactivity disorder (ADHD). Conclusions: Absence of BRINP1 causes deregulation of neurogenesis and impairments of neuronal differentiation in adult hippocampal circuitry. Abnormal behaviors comparable to those of human psychiatric disorders such as hyperactivity and poor social behavior were observed in BRINP1-KO mice. These abnormal behaviors could be caused by alteration of hippocampal circuitry as a consequence of the lack of BRINP1.
UR - http://www.scopus.com/inward/record.url?scp=84894458380&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84894458380&partnerID=8YFLogxK
U2 - 10.1186/1756-6606-7-12
DO - 10.1186/1756-6606-7-12
M3 - Article
C2 - 24528488
AN - SCOPUS:84894458380
SN - 1756-6606
VL - 7
JO - Molecular brain
JF - Molecular brain
IS - 1
M1 - 12
ER -