Aging Impacts the Overall Connectivity Strength of Regions Critical for Information Transfer Among Brain Networks

Epifanio Bagarinao, Hirohisa Watanabe, Satoshi Maesawa, Daisuke Mori, Kazuhiro Hara, Kazuya Kawabata, Noritaka Yoneyama, Reiko Ohdake, Kazunori Imai, Michihito Masuda, Takamasa Yokoi, Aya Ogura, Toshiaki Taoka, Shuji Koyama, Hiroki C. Tanabe, Masahisa Katsuno, Toshihiko Wakabayashi, Masafumi Kuzuya, Minoru Hoshiyama, Haruo IsodaShinji Naganawa, Norio Ozaki, Gen Sobue

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Recent studies have demonstrated that connector hubs, regions considered critical for the flow of information across neural systems, are mostly involved in neurodegenerative dementia. Considering that aging can significantly affect the brain’s intrinsic connectivity, identifying aging’s impact on these regions’ overall connection strength is important to differentiate changes associated with healthy aging from neurodegenerative disorders. Using resting state functional magnetic resonance imaging data from a carefully selected cohort of 175 healthy volunteers aging from 21 to 86 years old, we computed an intrinsic connectivity contrast (ICC) metric, which quantifies a region’s overall connectivity strength, for whole brain, short-range, and long-range connections and examined age-related changes of this metric over the adult lifespan. We have identified a limited number of hub regions with ICC values that showed significant negative relationship with age. These include the medial precentral/midcingulate gyri and insula with both their short-range and long-range (and thus whole-brain) ICC values negatively associated with age, and the angular, middle frontal, and posterior cingulate gyri with their long-range ICC values mainly involved. Seed-based connectivity analyses further confirmed that these regions are connector hubs with connectivity profile that strongly overlapped with multiple large-scale brain networks. General cognitive performance was not associated with these hubs’ ICC values. These findings suggest that even healthy aging could negatively impact the efficiency of regions critical for facilitating information transfer among different functional brain networks. The extent of the regions involved, however, was limited.

Original languageEnglish
Article number592469
JournalFrontiers in Aging Neuroscience
Volume12
DOIs
Publication statusPublished - 28-10-2020

All Science Journal Classification (ASJC) codes

  • Ageing
  • Cognitive Neuroscience

Fingerprint

Dive into the research topics of 'Aging Impacts the Overall Connectivity Strength of Regions Critical for Information Transfer Among Brain Networks'. Together they form a unique fingerprint.

Cite this