Abstract
The t(8;21) translocation is one of the most frequent chromosomal abnormalities associated with acute myeloid leukemia (AML). In this translocation, the AML1 (CBFA2/PEBP2aB) gene is disrupted and fused to the MTG8 (ETO) gene. The ectopic expression of the resulting AML1-MTG8 fusion gene product in L-G and 32Dcl3 murine myeloid precursor cells stimulates cell proliferation without inducing morphologic terminal differentiation into mature granulocytes in response to granulocyte-colony stimulating factor (G- CSF). This study found that the ectopic expression of AML1-MTG8 elevates the expression of the G-CSF receptor (G-CSFR). Analysis of the promoter region of the G-CSFR gene revealed that upregulation of G-CSFR expression by AML1-MTG8 does not depend on the AML1-binding sequence, but on the C/EBP (CCAAT/enhancer binding protein) binding site. The results suggest that the overproduction of G-CSFR is at least partly mediated by C/EBPε, whose expression is activated by AML1-MTG8. The ectopic expression of G-CSFR in L-G cells induced cell proliferation in response to G-CSF, but did not inhibit cell differentiation into mature neutrophils. Overexpression of C/EBPε in L- G cells also stimulated G-CSF-dependent cell proliferation. High expression levels of G-CSFR were also found in the leukemic cells of AML patients with t(8;21). Therefore, G-CSF-dependent cell proliferation of myeloid precursor cells may be implicated in leukemogenesis. (C) 2000 by The American Society of Hematology.
Original language | English |
---|---|
Pages (from-to) | 288-296 |
Number of pages | 9 |
Journal | Blood |
Volume | 96 |
Issue number | 1 |
DOIs | |
Publication status | Published - 01-07-2000 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Biochemistry
- Immunology
- Hematology
- Cell Biology