Amylin-Calcitonin receptor signaling in the medial preoptic area mediates affiliative social behaviors in female mice

Kansai Fukumitsu, Misato Kaneko, Teppo Maruyama, Chihiro Yoshihara, Arthur J. Huang, Thomas J. McHugh, Shigeyoshi Itohara, Minoru Tanaka, Kumi O. Kuroda

Research output: Contribution to journalArticlepeer-review

16 Citations (Scopus)

Abstract

Social animals actively engage in contact with conspecifics and experience stress upon isolation. However, the neural mechanisms coordinating the sensing and seeking of social contacts are unclear. Here we report that amylin-calcitonin receptor (Calcr) signaling in the medial preoptic area (MPOA) mediates affiliative social contacts among adult female mice. Isolation of females from free social interactions first induces active contact-seeking, then depressive-like behavior, concurrent with a loss of Amylin mRNA expression in the MPOA. Reunion with peers induces physical contacts, activates both amylin- and Calcr-expressing neurons, and leads to a recovery of Amylin mRNA expression. Chemogenetic activation of amylin neurons increases and molecular knockdown of either amylin or Calcr attenuates contact-seeking behavior, respectively. Our data provide evidence in support of a previously postulated origin of social affiliation in mammals.

Original languageEnglish
Article number709
JournalNature communications
Volume13
Issue number1
DOIs
Publication statusPublished - 12-2022
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General Biochemistry,Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Amylin-Calcitonin receptor signaling in the medial preoptic area mediates affiliative social behaviors in female mice'. Together they form a unique fingerprint.

Cite this