An evaluation method for developing abuse-deterrent opioid formulations with agonist and antagonist combinations using conditioned place preference

Xinjian Zhang, Kiyoyuki Kitaichi, Akihiro Mouri, Xinzhu Zhou, Toshitaka Nabeshima, Kiyofumi Yamada, Taku Nagai

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

Although opioids are useful narcotic analgesics in clinical settings, their misuse and addiction in the United States of America and other countries are rapidly increasing. Therefore, the development of abuse-deterrent formulations is an urgent issue. We herein investigated how to select the ratio of an opioid and the opioid receptor antagonist, naloxone in abuse-deterrent formulations for mice. The conditioned place preference (CPP) test was used to evaluate the rewarding effects of abused drugs. The opioids morphine (30 μmol/kg), oxycodone (3 μmol/kg), fentanyl (0.4 μmol/kg), and buprenorphine (0.5 μmol/kg) significantly induced place preference in mice. We also examined the optimal ratio of naloxone and opioids to inhibit the rewarding effects of the latter. Naloxone (3–5 μmol/kg) effectively inhibited place preference induced by the opioids tested. We calculated theoretical drug doses that exerted the same pharmacodynamic effects based on two parameters: μ-opioid receptor binding affinity and blood-brain barrier (BBB) permeability. Theoretical doses were very close to the drug doses at which mice showed place preference. Therefore, the CPP test is useful as a behavioral method for evaluating abuse-deterrent formulations of opioids mixed with an antagonist. The ratio of naloxone with opioids, at which mice did not show place preference, may be an effective index for developing abuse-deterrent formulations. Ratios may be calculated for other opioids based on μ-opioid receptor binding affinity and BBB permeability.

Original languageEnglish
Pages (from-to)100-105
Number of pages6
JournalBiochemical and Biophysical Research Communications
Volume639
DOIs
Publication statusPublished - 08-01-2023

All Science Journal Classification (ASJC) codes

  • Biophysics
  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'An evaluation method for developing abuse-deterrent opioid formulations with agonist and antagonist combinations using conditioned place preference'. Together they form a unique fingerprint.

Cite this