TY - JOUR
T1 - An evolutionarily conserved leucine-rich repeat protein CLERC is a centrosomal protein required for spindle pole integrity
AU - Muto, Yoshinori
AU - Yoshioka, Takashi
AU - Kimura, Masashi
AU - Matsunami, Miki
AU - Saya, Hideyuki
AU - Okano, Yukio
N1 - Funding Information:
Y.M. is indebted to Professor Emeritus Dr. M. Ishikawa of Ehime University for introducing him to the field of centrosome biology. This work was supported in part by a Grant-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan.
PY - 2008/9/1
Y1 - 2008/9/1
N2 - The centrosome functions as the microtubule-organizing center (MTOC) and plays a vital role in organizing spindle poles during mitosis. The pair of centrioles, which are the core components of the centrosome, duplicate once per cell cycle, and this feature is essential for the establishment of spindle bipolarity. Here we describe the molecular characterization of a novel protein called CLERC (Centrosomal leucine-rich repeat and coiled-coil containing protein) which is a human ortholog of Chlamydomonas Vfl1 protein. CLERC is a protein of 1032 amino acids with a calculated molecular mass of 120 kDa and possesses leucine-rich repeat and coiled-coil domains. Database searches revealed that CLERC has homologs in a wide variety of eukaryotes and is evolutionarily conserved. Endogenous CLERC protein associated with the centrosomes throughout the cell cycle and accumulated during mitosis. RNAi-mediated depletion of CLERC blocked formation of normal mitotic spindles and led to multipolar spindles. Moreover, many of the spindle poles in CLERC depleted cells contained only one centriole, indicating that centrosomes split into fractions containing a single centriole. These data indicate that the major function of CLERC during mitosis is to maintain the structural integrity of centrosomes, thereby contributing to spindle bipolarity.
AB - The centrosome functions as the microtubule-organizing center (MTOC) and plays a vital role in organizing spindle poles during mitosis. The pair of centrioles, which are the core components of the centrosome, duplicate once per cell cycle, and this feature is essential for the establishment of spindle bipolarity. Here we describe the molecular characterization of a novel protein called CLERC (Centrosomal leucine-rich repeat and coiled-coil containing protein) which is a human ortholog of Chlamydomonas Vfl1 protein. CLERC is a protein of 1032 amino acids with a calculated molecular mass of 120 kDa and possesses leucine-rich repeat and coiled-coil domains. Database searches revealed that CLERC has homologs in a wide variety of eukaryotes and is evolutionarily conserved. Endogenous CLERC protein associated with the centrosomes throughout the cell cycle and accumulated during mitosis. RNAi-mediated depletion of CLERC blocked formation of normal mitotic spindles and led to multipolar spindles. Moreover, many of the spindle poles in CLERC depleted cells contained only one centriole, indicating that centrosomes split into fractions containing a single centriole. These data indicate that the major function of CLERC during mitosis is to maintain the structural integrity of centrosomes, thereby contributing to spindle bipolarity.
UR - http://www.scopus.com/inward/record.url?scp=50849103021&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=50849103021&partnerID=8YFLogxK
U2 - 10.4161/cc.7.17.6591
DO - 10.4161/cc.7.17.6591
M3 - Article
C2 - 18728398
AN - SCOPUS:50849103021
SN - 1538-4101
VL - 7
SP - 2738
EP - 2748
JO - Cell Cycle
JF - Cell Cycle
IS - 17
ER -