An Examination for Uterine Dynamic Study with Phase-sensitive Inversion-recovery

Yasuo Takatsu, Shunichi Motegi, Tosiaki Miyati, Kenichirou Yamamura

Research output: Contribution to journalArticlepeer-review


The depth of myometrial invasion in patients with endometrial carcinoma is recognized as an important factor that closely correlates with prognosis. Preoperative assessment of myometrial invasion is essential for planning surgery. To enhance the contrast between myometrium and endometrium including myometrial invasion with endometrial carcinoma, we optimized the sequence parameter with phase-sensitive inversion-recovery (PSIR) in gadolinium dynamic study of uterine corpus. On a 1.5-T magnetic resonance imaging (MRI), images were acquired by three-dimensional (3D) T1 -turbo field echo (TFE) with PSIR sequence and gadolinium-diethylenetriamine pentaacetic acid( Gd-DTPA) diluted phantom (0-5 mmol/L) and myometrium model (manganese chloride tetrahydrate+agar). We calculated the null point and the contrast-to-noise ratio (CNR) at multiple TFE inversion delay times, 200 ms-maximum in each combination; flip angles (FAs), 5-35 degrees; TFE factor, 20-40; and shot interval (SI), 500-1000 ms. We assumed that dynamic scanning time was 30 seconds when the sensitivity encoding factor was 2, namely, in this study, the scanning time was 1 minute with no sensitivity encoding. In addition, we compared CNR between optimized PSIR sequence ande-Thrive. We recognized a successful CNR of the 3D PSIR parameter was TFE inversion delay times, 335 ms; FA, 25 degrees; TFE factor, 20; and SI, 500 ms. In each gadolinium-DTPA diluted phantom, the average CNR of the optimized PSIR sequence was approximately 1.7 times (maximum: 3 times) higher than e-Thrive. Optimizing sequence parameter of PSIR is applicable in gadolinium dynamic study of uterine corpus.

Original languageEnglish
Pages (from-to)31-41
Number of pages11
JournalNihon Hōshasen Gijutsu Gakkai zasshi
Issue number1
Publication statusPublished - 01-01-2016
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • General Medicine


Dive into the research topics of 'An Examination for Uterine Dynamic Study with Phase-sensitive Inversion-recovery'. Together they form a unique fingerprint.

Cite this