TY - JOUR
T1 - An orthotopic implantation mouse model of human malignant pleural mesothelioma for in vivo photon counting analysis and evaluation of the effect of S-1 therapy
AU - Yanagihara, Kazuyoshi
AU - Tsumuraya, Masaru
AU - Takigahira, Misato
AU - Mihara, Keichiro
AU - Kubo, Takanori
AU - Ohuchi, Kazuo
AU - Seyama, Toshio
N1 - Copyright:
Copyright 2010 Elsevier B.V., All rights reserved.
PY - 2010/6/15
Y1 - 2010/6/15
N2 - Human malignant pleural mesothelioma (HMPM) is an aggressive neoplasm that is highly resistant to conventional therapies. We established 3 HMPM cell lines (TCC-MESO-1, TCC-MESO-2 and TCC-MESO-3) from Japanese patients; the first 2 from the primary and metastatic tumors of a patient with the epithelioid type of HMPM, and the third from a patient with biphasic characteristics of the tumor (epithelioid and sarcomatous phenotypes). The 3 cell lines resembled the original HMPMs in their morphological and biological features, including the genetic alterations such as lack of p16 expression and mutation of p53. Their tumorigenicity was determined in SCID mice by orthotopic implantation (20-46%). The tumorigenicity of the HMPM cell lines, which was relatively low, was enhanced by repeated subcultures and orthotopic implantations, and 3 competent tumorigenic sublines were produced (Me1Tu, Me2Tu and Me3Tu sublines from the TCC-MESO-1, TCC-MESO-2 and TCC-MESO-3 cell lines, respectively). The resultant HMPM sublines efficiently generated tumors in the SCID mice (100%) following orthotopic implantation. SCID mice implanted with the competent sublines, into one of which the luciferase gene was introduced, displayed quantitative fluctuation of the bioluminescence for the tumor volume in vivo. Oral administration of S-1, an anticancer agent, suppressed the proliferation of the luciferase gene-expressing Me1Tu subline in the mouse models in vivo, with a treated-tocontrol ratio of the mean tumor volume of 0.2. The orthotopic implantation mouse model proved to be useful for quantitative evaluation of the efficacy of novel anticancer drugs and also for studying the biology of HMPMs in vivo.
AB - Human malignant pleural mesothelioma (HMPM) is an aggressive neoplasm that is highly resistant to conventional therapies. We established 3 HMPM cell lines (TCC-MESO-1, TCC-MESO-2 and TCC-MESO-3) from Japanese patients; the first 2 from the primary and metastatic tumors of a patient with the epithelioid type of HMPM, and the third from a patient with biphasic characteristics of the tumor (epithelioid and sarcomatous phenotypes). The 3 cell lines resembled the original HMPMs in their morphological and biological features, including the genetic alterations such as lack of p16 expression and mutation of p53. Their tumorigenicity was determined in SCID mice by orthotopic implantation (20-46%). The tumorigenicity of the HMPM cell lines, which was relatively low, was enhanced by repeated subcultures and orthotopic implantations, and 3 competent tumorigenic sublines were produced (Me1Tu, Me2Tu and Me3Tu sublines from the TCC-MESO-1, TCC-MESO-2 and TCC-MESO-3 cell lines, respectively). The resultant HMPM sublines efficiently generated tumors in the SCID mice (100%) following orthotopic implantation. SCID mice implanted with the competent sublines, into one of which the luciferase gene was introduced, displayed quantitative fluctuation of the bioluminescence for the tumor volume in vivo. Oral administration of S-1, an anticancer agent, suppressed the proliferation of the luciferase gene-expressing Me1Tu subline in the mouse models in vivo, with a treated-tocontrol ratio of the mean tumor volume of 0.2. The orthotopic implantation mouse model proved to be useful for quantitative evaluation of the efficacy of novel anticancer drugs and also for studying the biology of HMPMs in vivo.
UR - http://www.scopus.com/inward/record.url?scp=77951918721&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77951918721&partnerID=8YFLogxK
U2 - 10.1002/ijc.25002
DO - 10.1002/ijc.25002
M3 - Article
C2 - 19876922
AN - SCOPUS:77951918721
SN - 0020-7136
VL - 126
SP - 2835
EP - 2846
JO - International Journal of Cancer
JF - International Journal of Cancer
IS - 12
ER -