Analysis of loading to the hip joint in fall using whole-body FE model

Yuhei Aoshima, Sotaro Murakami, Koji Mizuno, Yohei Otaka, Minoru Yamada, Masahiro Jinzaki

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

Hip fractures caused by falls are important health problems for the elderly. Many studies used finite element (FE) models of the femur and its surroundings to evaluate the hip fracture risk during the impact phase in a fall. In this study, the whole-body human FE model (THUMS) of a small female was applied from the descent to the impact phase in a fall to understand the effect of the whole body. Brosh's material model was used for the soft tissue of the hip. A low-BMI and high-BMI model were developed based on THUMS (middle-BMI). For the middle-BMI model, the torso angle and the pelvis impact velocity were 45.2° and 2.62 m/s at the time of pelvis impact. The effective mass changed with time, and was 18.3 kg when the femoral neck force was maximum. The femoral neck force was 2.11 kN for the low-BMI model. The femoral neck forces when wearing a soft and a hard hip protector, and when falling on an energy-absorbing floor were compared for the FE models of human and a hip protector testing system. Though the force attenuation of the protective devices was 32.0–44.3 % in the testing system, the force attenuation in the middle-BMI was 0.1–22.2 %. In the low-BMI model, the attenuation of the soft protector was limited (4.2 %) because the hip protector protruded from the outer surface, so the contact force was concentrated at the hip region. This research suggests the importance of including the whole body to evaluate the hip fracture risk.

Original languageEnglish
Article number111262
JournalJournal of Biomechanics
Volume142
DOIs
Publication statusPublished - 09-2022

All Science Journal Classification (ASJC) codes

  • Biophysics
  • Biomedical Engineering
  • Orthopedics and Sports Medicine
  • Rehabilitation

Fingerprint

Dive into the research topics of 'Analysis of loading to the hip joint in fall using whole-body FE model'. Together they form a unique fingerprint.

Cite this