TY - GEN
T1 - Animal model of schizophrenia
T2 - Dysfunction of NMDA receptor-signaling in mice following withdrawal from repeated administration of phencyclidine
AU - Nabeshima, Toshitaka
AU - Mouri, Akihiro
AU - Murai, Rina
AU - Noda, Yukihiro
N1 - Copyright:
Copyright 2018 Elsevier B.V., All rights reserved.
PY - 2006/11
Y1 - 2006/11
N2 - In humans, phencyclidine (PCP), a noncompetitive N-methyl-D-aspartate(NMDA) antagonist, reproduces a schizophrenia-like psychosis such as positive/negative symptoms and cognitive deficits. PCP (10 mg/kg/day for 14 days)-treated mice exhibit the enhanced immobility in a forced swimming test as indexes of negative symptoms and impairment of latent learning in a water finding test as indexes of cognitive deficits. These behavioral deficits remain after withdrawal from repeated PCP treatment and are attenuated by atypical antipsychotics, but not by typical antipsychotics. Since it has been hypothesized that insufficient glutamate neurotransmission is involved in the pathophysiology of schizophrenia, we investigated an involvement of glutamatergic system in emotional and cognitive deficits in mice treated with PCP repeatedly. Ca2+/ calmodulin kinase II (CaMKII) is markedly phosphorylated after the forced swimming test and the training trial of water finding test in the prefrontal cortex of saline-treated mice but not PCP-treated mice. Facilitation of NMDA receptor function by NMDA receptor glycine-site agonists such as D-cycloserine and glycine is effective on the abnormal intracellular signaling, and emotional and cognitive deficits in mice treated with PCP repeatedly. The repeated PCP treatment impaired NMDA receptor function and decreased levels of spontaneous extracellular glutamate in the prefrontal cortex, indicating that the repeated PCP treatment impairs both pre- and postsynaptic glutamate transmissions. Our findings suggest that abnormal NMDA receptor signaling is involved in the emotional and cognitive deficits in mice treated with PCP repeatedly. Our PCP-treated mice would be a useful model for studying the effect of antipsychotics on emotional and cognitive deficits in schizophrenia.
AB - In humans, phencyclidine (PCP), a noncompetitive N-methyl-D-aspartate(NMDA) antagonist, reproduces a schizophrenia-like psychosis such as positive/negative symptoms and cognitive deficits. PCP (10 mg/kg/day for 14 days)-treated mice exhibit the enhanced immobility in a forced swimming test as indexes of negative symptoms and impairment of latent learning in a water finding test as indexes of cognitive deficits. These behavioral deficits remain after withdrawal from repeated PCP treatment and are attenuated by atypical antipsychotics, but not by typical antipsychotics. Since it has been hypothesized that insufficient glutamate neurotransmission is involved in the pathophysiology of schizophrenia, we investigated an involvement of glutamatergic system in emotional and cognitive deficits in mice treated with PCP repeatedly. Ca2+/ calmodulin kinase II (CaMKII) is markedly phosphorylated after the forced swimming test and the training trial of water finding test in the prefrontal cortex of saline-treated mice but not PCP-treated mice. Facilitation of NMDA receptor function by NMDA receptor glycine-site agonists such as D-cycloserine and glycine is effective on the abnormal intracellular signaling, and emotional and cognitive deficits in mice treated with PCP repeatedly. The repeated PCP treatment impaired NMDA receptor function and decreased levels of spontaneous extracellular glutamate in the prefrontal cortex, indicating that the repeated PCP treatment impairs both pre- and postsynaptic glutamate transmissions. Our findings suggest that abnormal NMDA receptor signaling is involved in the emotional and cognitive deficits in mice treated with PCP repeatedly. Our PCP-treated mice would be a useful model for studying the effect of antipsychotics on emotional and cognitive deficits in schizophrenia.
UR - http://www.scopus.com/inward/record.url?scp=34447525394&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34447525394&partnerID=8YFLogxK
U2 - 10.1196/annals.1377.003
DO - 10.1196/annals.1377.003
M3 - Conference contribution
C2 - 17185514
AN - SCOPUS:34447525394
SN - 1573316555
SN - 9781573316552
T3 - Annals of the New York Academy of Sciences
SP - 160
EP - 168
BT - Integrated Molecular Medicine for Neuronal and Neoplastic Disorders
PB - Blackwell Publishing Inc.
ER -