Abstract
Epstein-Barr virus (EBV) is a well-established tumor virus that has been implicated in a wide range of immunodeficiency-associated lymphoproliferative disorders (LPDs). Although rituximab, a CD20 mAb, has proven effective against EBV-associated LPDs, prolonged use of this drug could lead to resistance due to the selective expansion of CD20− cells. We have previously shown that cyclin-dependent kinase (CDK) inhibitors are able to specifically suppress the expression of viral late genes, particularly those encoding structural proteins; however, the therapeutic effect of CDK inhibitors against EBV-associated LPDs is not clear. In this study, we examined whether CDK inhibitors confer a therapeutic effect against LPDs in vivo. Treatment with alsterpaullone, an inhibitor of the CDK2 complex, resulted in a survival benefit and suppressed tumor invasion in a mouse model of LPDs. Inhibition of CDK efficiently induced G1 cell cycle arrest and apoptosis in EBV-positive B cells. These results suggest that alsterpaullone suppresses cell cycle progression, resulting in the antitumor effect observed in vivo.
Original language | English |
---|---|
Pages (from-to) | 279-287 |
Number of pages | 9 |
Journal | Cancer science |
Volume | 111 |
Issue number | 1 |
DOIs | |
Publication status | Published - 01-01-2020 |
All Science Journal Classification (ASJC) codes
- Oncology
- Cancer Research