Apoptosis induction by antisense oligonucleotides against miR-17-5p and miR-20a in lung cancers overexpressing miR-17-92

H. Matsubara, T. Takeuchi, E. Nishikawa, K. Yanagisawa, Y. Hayashita, H. Ebi, H. Yamada, M. Suzuki, M. Nagino, Y. Nimura, H. Osada, T. Takahashi

Research output: Contribution to journalArticlepeer-review

326 Citations (Scopus)

Abstract

Amplification and overexpression of the miR-17-92 microRNAs (miRNA) cluster at 13q31.3 has recently reported, with pointers to functional involvement in the development of B-cell lymphomas and lung cancers. In the present study, we show that inhibition of miR-17-5p and miR-20a with antisense oligonucleotides (ONs) can induce apoptosis selectively in lung cancer cells overexpressing miR-17-92, suggesting the possibility of 'OncomiR addiction' to expression of these miRNAs in a subset of lung cancers. In marked contrast, antisense ONs against miR-18a and miR-19a did not exhibit such inhibitory effects, whereas inhibition of miR-92-1 resulted in only modest reduction of cell growth, showing significant distinctions among miRNAs of the miR-17-92 cluster in terms of their roles in cancer cell growth. During the course of this study, we also found that enforced expression of a genomic region, termed C2, residing 3′ to miR-17-92 in the intron 3 of C13orf25 led to marked growth inhibition in association with double stranded RNA-dependent protein kinase activation. Finally, this study also revealed that the vast majority of C13orf25 transcripts are detected as Drosha-processed cleavage products on Northern blot analysis and that a novel polyadenylation site is present 3′ to the miR-17-92 cluster and 5′ to the C2 region. Taken together, the present findings contribute towards better understanding of the oncogenic roles of miR-17-92, which might ultimately lead to the future translation into clinical applications.

Original languageEnglish
Pages (from-to)6099-6105
Number of pages7
JournalOncogene
Volume26
Issue number41
DOIs
Publication statusPublished - 06-09-2007
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Molecular Biology
  • Genetics
  • Cancer Research

Fingerprint

Dive into the research topics of 'Apoptosis induction by antisense oligonucleotides against miR-17-5p and miR-20a in lung cancers overexpressing miR-17-92'. Together they form a unique fingerprint.

Cite this