Astrocytic dysfunction induced by ABCA1 deficiency causes optic neuropathy

Youichi Shinozaki, Alex Leung, Kazuhiko Namekata, Sei Saitoh, Huy Bang Nguyen, Akiko Takeda, Yosuke Danjo, Yosuke M. Morizawa, Eiji Shigetomi, Fumikazu Sano, Nozomu Yoshioka, Hirohide Takebayashi, Nobuhiko Ohno, Takahiro Segawa, Kunio Miyake, Kenji Kashiwagi, Takayuki Harada, Shin Ichi Ohnuma, Schuichi Koizumi

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)

Abstract

Astrocyte abnormalities have received great attention for their association with various diseases in the brain but not so much in the eye. Recent independent genome-wide association studies of glaucoma, optic neuropathy characterized by retinal ganglion cell (RGC) degeneration, and vision loss found that single-nucleotide polymorphisms near the ABCA1 locus were common risk factors. Here, we show that Abca1 loss in retinal astrocytes causes glaucoma-like optic neuropathy in aged mice. ABCA1 was highly expressed in retinal astrocytes in mice. Thus, we generated macroglia-specific Abca1-deficient mice (Glia-KO) and found that aged Glia-KO mice had RGC degeneration and ocular dysfunction without affected intraocular pressure, a conventional risk factor for glaucoma. Single-cell RNA sequencing revealed that Abca1 deficiency in aged Glia-KO mice caused astrocyte-triggered inflammation and increased the susceptibility of certain RGC clusters to excitotoxicity. Together, astrocytes play a pivotal role in eye diseases, and loss of ABCA1 in astrocytes causes glaucoma-like neuropathy.

Original languageEnglish
Article numberabq1081
JournalScience advances
Volume8
Issue number44
DOIs
Publication statusPublished - 11-2022

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'Astrocytic dysfunction induced by ABCA1 deficiency causes optic neuropathy'. Together they form a unique fingerprint.

Cite this