Bio-Synthesized Nanoflowers and Chemically Synthesized Nanowires Zinc-Oxide induced Changes in the Redox and Protein Folding in Soybean Seedlings: a Proteomic Analysis

Ghazala Mustafa, Suzuna Miyagawa, Murtaza Hasan, Hisateru Yamaguchi, Keisuke Hitachi, Kunihiro Tsuchida, Setsuko Komatsu

Research output: Contribution to journalArticlepeer-review

16 Citations (Scopus)

Abstract

Plant-mediated synthesis methods of nanoflowers (NFs) open a new epoch of extensive application, economical, exceedingly stable, and reproducible synthesis of zinc oxide (ZnO) NFs. To study the effects of bio-synthesized (BS) NFs and chemically synthesized nanowires (CS NWs) ZnO on soybean, a gel-free/ label-free proteomic technique was used. Length and weight of root including hypocotyl were enhanced by 10 ppm BS NFs and CS NWs ZnO. Oppositely changed proteins between BS NFs and CS NWs ZnO were related to hormone metabolism, protein folding, and redox metabolism. Abundance of heat shock protein 70 (HSP70) increased in BS NFs ZnO while did not change in CS NWs ZnO. Abundance of ascorbate peroxidase and peroxiredoxin increased and decreased, respectively, in BS NFs ZnO. Ascorbic acid and hydrogen peroxide increased, respectively, with BS NFs and CS NWs ZnO. These results suggest that BS NFs ZnO might improve the soybean growth by increasing the protein folding due to accumulation of HSP70 and redox metabolism through detoxification of hydrogen peroxide. On the other hand, CS NWs ZnO treated soybean experienced loss of protein folding and increased oxidative stress.

Original languageEnglish
Pages (from-to)2570-2584
Number of pages15
JournalJournal of Plant Growth Regulation
Volume42
Issue number4
DOIs
Publication statusPublished - 04-2023
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Agronomy and Crop Science
  • Plant Science

Fingerprint

Dive into the research topics of 'Bio-Synthesized Nanoflowers and Chemically Synthesized Nanowires Zinc-Oxide induced Changes in the Redox and Protein Folding in Soybean Seedlings: a Proteomic Analysis'. Together they form a unique fingerprint.

Cite this