Biphasic regulation of RNA interference during rotavirus infection by modulation of Argonaute2

Urbi Mukhopadhyay, Shampa Chanda, Upayan Patra, Anupam Mukherjee, Satoshi Komoto, Mamta Chawla-Sarkar

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)


RNA interference (RNAi) is an evolutionary ancient innate immune response in plants, nematodes, and arthropods providing natural protection against viral infection. Viruses have also gained counter-defensive measures by producing virulence determinants called viral-suppressors-of-RNAi (VSRs). Interestingly, in spite of dominance of interferon-based immunity over RNAi in somatic cells of higher vertebrates, recent reports are accumulating in favour of retention of the antiviral nature of RNAi in mammalian cells. The present study focuses on the modulation of intracellular RNAi during infection with rotavirus (RV), an enteric virus with double-stranded RNA genome. Intriguingly, a time point-dependent bimodal regulation of RNAi was observed in RV-infected cells, where short interfering RNA (siRNA)-based RNAi was rendered non-functional during early hours of infection only to be reinstated fully beyond that early infection stage. Subsequent investigations revealed RV nonstructural protein 1 to serve as a putative VSR by associating with and triggering degradation of Argonaute2 (AGO2), the prime effector of siRNA-mediated RNAi, via ubiquitin–proteasome pathway. The proviral significance of AGO2 degradation was further confirmed when ectopic overexpression of AGO2 significantly reduced RV infection. Cumulatively, the current study presents a unique modulation of host RNAi during RV infection, highlighting the importance of antiviral RNAi in mammalian cells.

Original languageEnglish
Article numbere13101
JournalCellular Microbiology
Issue number12
Publication statusPublished - 01-12-2019

All Science Journal Classification (ASJC) codes

  • Microbiology
  • Immunology
  • Virology


Dive into the research topics of 'Biphasic regulation of RNA interference during rotavirus infection by modulation of Argonaute2'. Together they form a unique fingerprint.

Cite this