TY - JOUR
T1 - BMP3b Is a Novel Antifibrotic Molecule Regulated by Meflin in Lung Fibroblasts
AU - Suzuki, Atsushi
AU - Sakamoto, Koji
AU - Nakahara, Yoshio
AU - Enomoto, Atsushi
AU - Hino, Jun
AU - Ando, Akira
AU - Inoue, Masahide
AU - Shiraki, Yukihiro
AU - Omote, Norihito
AU - Kusaka, Masahiro
AU - Fukihara, Jun
AU - Hashimoto, Naozumi
PY - 2022/10/1
Y1 - 2022/10/1
N2 - Fibroblasts play a central role in the lung fibrotic process. Our recent study identified a novel subpopulation of lung fibroblasts expressing meflin (mesenchymal stromal cell- and fibroblast-expressing Linx paralogue), antifibrotic properties of which were confirmed by murine lung fibrosis model. Meflin-expressing fibroblasts were resistant to fibrogenesis induced by TGF-β (transforming growth factor-β), but its underlying mechanisms remain unknown. In this study, evaluation of a silica-nanoparticle-induced lung fibrosis model confirmed the antifibrotic effect of meflin via the regulation of TGF-β signaling. We conducted comparative gene expression profiling in lung fibroblasts, which identified growth differentiation factor 10 (Gdf10) encoding bone morphogenic protein 3b (BMP3b) as the most downregulated gene in meflin-deficient cells under the profibrotic condition with TGF-β. We hypothesized that BMP3b can be an effector molecule playing an antifibrotic role downstream of meflin. As suggested by single-cell transcriptomic data, restricted expressions of Gdf10 (Bmp3b) in stromal cells including fibroblasts were confirmed. We examined possible antifibrotic properties of BMP3b in lung fibroblasts and demonstrated that Bmp3b-null fibroblasts were more susceptible to TGF-β-induced fibrogenic changes. Furthermore, Bmp3b-null mice exhibited exaggerated lung fibrosis induced by silica-nanoparticles in vivo. We also demonstrated that treatment with recombinant BMP3B was effective against TGF-β-induced fibrogenesis in fibroblasts, especially in the suppression of excessive extracellular matrix production. These lines of evidence suggested that BMP3b is a novel humoral effector molecule regulated by meflin which exerts antifibrotic properties in lung fibroblasts. Supplementation of BMP3B could be a novel therapeutic strategy for fibrotic lung diseases.
AB - Fibroblasts play a central role in the lung fibrotic process. Our recent study identified a novel subpopulation of lung fibroblasts expressing meflin (mesenchymal stromal cell- and fibroblast-expressing Linx paralogue), antifibrotic properties of which were confirmed by murine lung fibrosis model. Meflin-expressing fibroblasts were resistant to fibrogenesis induced by TGF-β (transforming growth factor-β), but its underlying mechanisms remain unknown. In this study, evaluation of a silica-nanoparticle-induced lung fibrosis model confirmed the antifibrotic effect of meflin via the regulation of TGF-β signaling. We conducted comparative gene expression profiling in lung fibroblasts, which identified growth differentiation factor 10 (Gdf10) encoding bone morphogenic protein 3b (BMP3b) as the most downregulated gene in meflin-deficient cells under the profibrotic condition with TGF-β. We hypothesized that BMP3b can be an effector molecule playing an antifibrotic role downstream of meflin. As suggested by single-cell transcriptomic data, restricted expressions of Gdf10 (Bmp3b) in stromal cells including fibroblasts were confirmed. We examined possible antifibrotic properties of BMP3b in lung fibroblasts and demonstrated that Bmp3b-null fibroblasts were more susceptible to TGF-β-induced fibrogenic changes. Furthermore, Bmp3b-null mice exhibited exaggerated lung fibrosis induced by silica-nanoparticles in vivo. We also demonstrated that treatment with recombinant BMP3B was effective against TGF-β-induced fibrogenesis in fibroblasts, especially in the suppression of excessive extracellular matrix production. These lines of evidence suggested that BMP3b is a novel humoral effector molecule regulated by meflin which exerts antifibrotic properties in lung fibroblasts. Supplementation of BMP3B could be a novel therapeutic strategy for fibrotic lung diseases.
UR - http://www.scopus.com/inward/record.url?scp=85139535828&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85139535828&partnerID=8YFLogxK
U2 - 10.1165/rcmb.2021-0484OC
DO - 10.1165/rcmb.2021-0484OC
M3 - Article
C2 - 35728045
AN - SCOPUS:85139535828
SN - 1044-1549
VL - 67
SP - 446
EP - 458
JO - American Journal of Respiratory Cell and Molecular Biology
JF - American Journal of Respiratory Cell and Molecular Biology
IS - 4
ER -