TY - JOUR
T1 - Borna Disease Virus Phosphoprotein Represses p53-Mediated Transcriptional Activity by Interference with HMGB1
AU - Zhang, Guoqi
AU - Kobayashi, Takeshi
AU - Kamitani, Wataru
AU - Komoto, Satoshi
AU - Yamashita, Makiko
AU - Baba, Satoko
AU - Yanai, Hideyuki
AU - Ikuta, Kazuyoshi
AU - Tomonaga, Keizo
PY - 2003/11
Y1 - 2003/11
N2 - Borna disease virus (BDV) is a noncytolytic, neurotropic RNA virus that has a broad host range in warm-blooded animals, probably including humans. Recently, it was demonstrated that a 24-kDa phosphoprotein (P) of BDV directly binds to a multifunctional protein, amphoterin-HMGB1, and inhibits its function in cultured neural cells (W. Kamitani, Y. Shoya, T. Kobayashi, M. Watanabe, B. J. Lee, G. Zhang, K. Tomonaga, and K. Ikuta, J. Virol. 75:8742-8751, 2001). This observation suggested that expression of BDV P may cause deleterious effects in cellular functions by interference with HMGB1. In this study, we further investigated the significance of the binding between P and HMGB1. We demonstrated that P directly binds to the A-box domain on HMGB1, which is also responsible for interaction with a tumor suppression factor, p53. Recent works have demonstrated that binding between HMGB1 and p53 enhances p53-mediated transcriptional activity. Thus, we examined whether BDV P affects the transcriptional activity of p53 by interference with HMGB1. Mammalian two-hybrid analysis revealed that p53 and P competitively interfere with the binding of each protein to HMGB1 in a p53-deficient cell line, NCI-H1299. In addition, P was able to significantly decrease p53-mediated transcriptional activation of the cyclin G promoter. Furthermore, we showed that activation of p21waf1 expression was repressed in cyclosporine-treated BDV-infected cells, as well as p53-transduced NCI-H1299 cells. These results suggested that BDV P may be a unique inhibitor of p53 activity via binding to HMGB1.
AB - Borna disease virus (BDV) is a noncytolytic, neurotropic RNA virus that has a broad host range in warm-blooded animals, probably including humans. Recently, it was demonstrated that a 24-kDa phosphoprotein (P) of BDV directly binds to a multifunctional protein, amphoterin-HMGB1, and inhibits its function in cultured neural cells (W. Kamitani, Y. Shoya, T. Kobayashi, M. Watanabe, B. J. Lee, G. Zhang, K. Tomonaga, and K. Ikuta, J. Virol. 75:8742-8751, 2001). This observation suggested that expression of BDV P may cause deleterious effects in cellular functions by interference with HMGB1. In this study, we further investigated the significance of the binding between P and HMGB1. We demonstrated that P directly binds to the A-box domain on HMGB1, which is also responsible for interaction with a tumor suppression factor, p53. Recent works have demonstrated that binding between HMGB1 and p53 enhances p53-mediated transcriptional activity. Thus, we examined whether BDV P affects the transcriptional activity of p53 by interference with HMGB1. Mammalian two-hybrid analysis revealed that p53 and P competitively interfere with the binding of each protein to HMGB1 in a p53-deficient cell line, NCI-H1299. In addition, P was able to significantly decrease p53-mediated transcriptional activation of the cyclin G promoter. Furthermore, we showed that activation of p21waf1 expression was repressed in cyclosporine-treated BDV-infected cells, as well as p53-transduced NCI-H1299 cells. These results suggested that BDV P may be a unique inhibitor of p53 activity via binding to HMGB1.
UR - http://www.scopus.com/inward/record.url?scp=0242363230&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0242363230&partnerID=8YFLogxK
U2 - 10.1128/JVI.77.22.12243-12251.2003
DO - 10.1128/JVI.77.22.12243-12251.2003
M3 - Article
C2 - 14581561
AN - SCOPUS:0242363230
SN - 0022-538X
VL - 77
SP - 12243
EP - 12251
JO - Journal of Virology
JF - Journal of Virology
IS - 22
ER -