Abstract
Carboxypeptidase E (CPE) is involved in maturation of neuropeptides and sorting of brain-derived neurotrophic factor (BDNF) to the regulated pathway for activity-dependent secretion from CNS neurons. CPE knockout (CPE-KO) mice have many neurological deficits, including deficits in learning and memory. Here, we analyzed the dendritic arborization and spine morphology of CPE-KO mice to determine a possible correlation of defects in such structures with the neurological deficits observed in these animals. Analysis of pyramidal neurons in layer V of cerebral cortex and in hippocampal CA1 region in 14-week-old CPE-KO mice showed more dendritic complexity compared with wild type (WT) mice. There were more dendritic intersections and more branch points in CPE-KO vs. WT neurons. Comparison of pyramidal cortical neurons in 6- vs. 14-week-old WT mice showed a decrease in dendritic arborization, reflecting the occurrence of normal dendritic pruning. However, this did not occur in CPE-KO neurons. Furthermore, analysis of spine morphology demonstrated a significant increase in the number of D-type spines regarded as nonfunctional in the cortical neurons of CPE-KO animals. Our findings suggest that CPE is an important, novel player in mediating appropriate dendritic patterning and spine formation in CNS neurons.
Original language | English |
---|---|
Pages (from-to) | 64-72 |
Number of pages | 9 |
Journal | Journal of Neuroscience Research |
Volume | 88 |
Issue number | 1 |
DOIs | |
Publication status | Published - 01-2010 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Cellular and Molecular Neuroscience