Carboxypeptidase E knockout mice exhibit abnormal dendritic arborization and spine morphology in central nervous system neurons

Alicja Woronowicz, Niamh X. Cawley, Su Youne Chang, Hisatsugu Koshimizu, Andrè W. Phillips, Zhi Gang Xiong, Y. Peng Loh

Research output: Contribution to journalArticle

16 Citations (Scopus)

Abstract

Carboxypeptidase E (CPE) is involved in maturation of neuropeptides and sorting of brain-derived neurotrophic factor (BDNF) to the regulated pathway for activity-dependent secretion from CNS neurons. CPE knockout (CPE-KO) mice have many neurological deficits, including deficits in learning and memory. Here, we analyzed the dendritic arborization and spine morphology of CPE-KO mice to determine a possible correlation of defects in such structures with the neurological deficits observed in these animals. Analysis of pyramidal neurons in layer V of cerebral cortex and in hippocampal CA1 region in 14-week-old CPE-KO mice showed more dendritic complexity compared with wild type (WT) mice. There were more dendritic intersections and more branch points in CPE-KO vs. WT neurons. Comparison of pyramidal cortical neurons in 6- vs. 14-week-old WT mice showed a decrease in dendritic arborization, reflecting the occurrence of normal dendritic pruning. However, this did not occur in CPE-KO neurons. Furthermore, analysis of spine morphology demonstrated a significant increase in the number of D-type spines regarded as nonfunctional in the cortical neurons of CPE-KO animals. Our findings suggest that CPE is an important, novel player in mediating appropriate dendritic patterning and spine formation in CNS neurons.

Original languageEnglish
Pages (from-to)64-72
Number of pages9
JournalJournal of Neuroscience Research
Volume88
Issue number1
DOIs
Publication statusPublished - 01-01-2010

Fingerprint

Carboxypeptidase H
Dendritic Spines
Neuronal Plasticity
Knockout Mice
Central Nervous System
Neurons
Pyramidal Cells
Spine
Hippocampal CA1 Region
Brain-Derived Neurotrophic Factor
Neuropeptides
Cerebral Cortex
Learning

All Science Journal Classification (ASJC) codes

  • Cellular and Molecular Neuroscience

Cite this

Woronowicz, Alicja ; Cawley, Niamh X. ; Chang, Su Youne ; Koshimizu, Hisatsugu ; Phillips, Andrè W. ; Xiong, Zhi Gang ; Loh, Y. Peng. / Carboxypeptidase E knockout mice exhibit abnormal dendritic arborization and spine morphology in central nervous system neurons. In: Journal of Neuroscience Research. 2010 ; Vol. 88, No. 1. pp. 64-72.
@article{827ff0e99f8f4431aa4b4f4148974cb5,
title = "Carboxypeptidase E knockout mice exhibit abnormal dendritic arborization and spine morphology in central nervous system neurons",
abstract = "Carboxypeptidase E (CPE) is involved in maturation of neuropeptides and sorting of brain-derived neurotrophic factor (BDNF) to the regulated pathway for activity-dependent secretion from CNS neurons. CPE knockout (CPE-KO) mice have many neurological deficits, including deficits in learning and memory. Here, we analyzed the dendritic arborization and spine morphology of CPE-KO mice to determine a possible correlation of defects in such structures with the neurological deficits observed in these animals. Analysis of pyramidal neurons in layer V of cerebral cortex and in hippocampal CA1 region in 14-week-old CPE-KO mice showed more dendritic complexity compared with wild type (WT) mice. There were more dendritic intersections and more branch points in CPE-KO vs. WT neurons. Comparison of pyramidal cortical neurons in 6- vs. 14-week-old WT mice showed a decrease in dendritic arborization, reflecting the occurrence of normal dendritic pruning. However, this did not occur in CPE-KO neurons. Furthermore, analysis of spine morphology demonstrated a significant increase in the number of D-type spines regarded as nonfunctional in the cortical neurons of CPE-KO animals. Our findings suggest that CPE is an important, novel player in mediating appropriate dendritic patterning and spine formation in CNS neurons.",
author = "Alicja Woronowicz and Cawley, {Niamh X.} and Chang, {Su Youne} and Hisatsugu Koshimizu and Phillips, {Andr{\`e} W.} and Xiong, {Zhi Gang} and Loh, {Y. Peng}",
year = "2010",
month = "1",
day = "1",
doi = "10.1002/jnr.22174",
language = "English",
volume = "88",
pages = "64--72",
journal = "Journal of Neuroscience Research",
issn = "0360-4012",
publisher = "Wiley-Liss Inc.",
number = "1",

}

Carboxypeptidase E knockout mice exhibit abnormal dendritic arborization and spine morphology in central nervous system neurons. / Woronowicz, Alicja; Cawley, Niamh X.; Chang, Su Youne; Koshimizu, Hisatsugu; Phillips, Andrè W.; Xiong, Zhi Gang; Loh, Y. Peng.

In: Journal of Neuroscience Research, Vol. 88, No. 1, 01.01.2010, p. 64-72.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Carboxypeptidase E knockout mice exhibit abnormal dendritic arborization and spine morphology in central nervous system neurons

AU - Woronowicz, Alicja

AU - Cawley, Niamh X.

AU - Chang, Su Youne

AU - Koshimizu, Hisatsugu

AU - Phillips, Andrè W.

AU - Xiong, Zhi Gang

AU - Loh, Y. Peng

PY - 2010/1/1

Y1 - 2010/1/1

N2 - Carboxypeptidase E (CPE) is involved in maturation of neuropeptides and sorting of brain-derived neurotrophic factor (BDNF) to the regulated pathway for activity-dependent secretion from CNS neurons. CPE knockout (CPE-KO) mice have many neurological deficits, including deficits in learning and memory. Here, we analyzed the dendritic arborization and spine morphology of CPE-KO mice to determine a possible correlation of defects in such structures with the neurological deficits observed in these animals. Analysis of pyramidal neurons in layer V of cerebral cortex and in hippocampal CA1 region in 14-week-old CPE-KO mice showed more dendritic complexity compared with wild type (WT) mice. There were more dendritic intersections and more branch points in CPE-KO vs. WT neurons. Comparison of pyramidal cortical neurons in 6- vs. 14-week-old WT mice showed a decrease in dendritic arborization, reflecting the occurrence of normal dendritic pruning. However, this did not occur in CPE-KO neurons. Furthermore, analysis of spine morphology demonstrated a significant increase in the number of D-type spines regarded as nonfunctional in the cortical neurons of CPE-KO animals. Our findings suggest that CPE is an important, novel player in mediating appropriate dendritic patterning and spine formation in CNS neurons.

AB - Carboxypeptidase E (CPE) is involved in maturation of neuropeptides and sorting of brain-derived neurotrophic factor (BDNF) to the regulated pathway for activity-dependent secretion from CNS neurons. CPE knockout (CPE-KO) mice have many neurological deficits, including deficits in learning and memory. Here, we analyzed the dendritic arborization and spine morphology of CPE-KO mice to determine a possible correlation of defects in such structures with the neurological deficits observed in these animals. Analysis of pyramidal neurons in layer V of cerebral cortex and in hippocampal CA1 region in 14-week-old CPE-KO mice showed more dendritic complexity compared with wild type (WT) mice. There were more dendritic intersections and more branch points in CPE-KO vs. WT neurons. Comparison of pyramidal cortical neurons in 6- vs. 14-week-old WT mice showed a decrease in dendritic arborization, reflecting the occurrence of normal dendritic pruning. However, this did not occur in CPE-KO neurons. Furthermore, analysis of spine morphology demonstrated a significant increase in the number of D-type spines regarded as nonfunctional in the cortical neurons of CPE-KO animals. Our findings suggest that CPE is an important, novel player in mediating appropriate dendritic patterning and spine formation in CNS neurons.

UR - http://www.scopus.com/inward/record.url?scp=73949104135&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=73949104135&partnerID=8YFLogxK

U2 - 10.1002/jnr.22174

DO - 10.1002/jnr.22174

M3 - Article

C2 - 19598241

AN - SCOPUS:73949104135

VL - 88

SP - 64

EP - 72

JO - Journal of Neuroscience Research

JF - Journal of Neuroscience Research

SN - 0360-4012

IS - 1

ER -