TY - JOUR
T1 - Cardiomyocyte transplantation in a porcine myocardial infarction model
AU - Watanabe, Eiichi
AU - Smith, Duane M.
AU - Delcarpio, Joseph B.
AU - Sun, Jian
AU - Smart, Frank W.
AU - Van Meter, Clifford H.
AU - Claycomb, William C.
N1 - Funding Information:
The authors would like to thank Cathy Vial for help with the transmission electron microscopy. E. Watanabe was supported by a postdoctoral fellowship from the American Heart Association, Louisiana Affiliate.
PY - 1998/5
Y1 - 1998/5
N2 - Transplantation of cardiomyocytes into the heart is a potential treatment for replacing damaged cardiac muscle. To investigate the feasibility and efficiency of this technique, either a cardiac-derived cell line (HL-1 cells), or normal fetal or neonatal pig cardiomyocytes were grafted into a porcine model of myocardial infarction. The myocardial infarction was created by the placement of an embolization coil in the distal portion of the left anterior descending artery in Yorkshire pigs (n = 9). Four to 5 wk after creation of an infarct, the three preparations of cardiomyocytes were grafted, at 1 x 106 cells/20 μL into normal and into the middle of the infarcted myocardium. The hearts were harvested and processed for histologic examinations 4 to 5 wk after the cell grafts. Histologic evaluation of the graft sites demonstrated that HL-1 cells and fetal pig cardiomyocytes formed stable grafts within the normal myocardium without any detrimental effect including arrhythmia. In addition, a marked increase in angiogenesis was observed both within the grafts and adjacent host myocardium. Electron microscopy studies demonstrated that fetal pig cardiomyocytes and the host myocardial cells were coupled with adherens-type junctions and gap junctions. Histologic examination of graft sites from infarct tissue failed to show the presence of grafted HL-1 cells, fetal, or neonatal pig cardiomyocytes. Cardiomyocyte transplantation may provide the potential means for cell-mediated gene therapy for introduction of therapeutic molecules into the heart.
AB - Transplantation of cardiomyocytes into the heart is a potential treatment for replacing damaged cardiac muscle. To investigate the feasibility and efficiency of this technique, either a cardiac-derived cell line (HL-1 cells), or normal fetal or neonatal pig cardiomyocytes were grafted into a porcine model of myocardial infarction. The myocardial infarction was created by the placement of an embolization coil in the distal portion of the left anterior descending artery in Yorkshire pigs (n = 9). Four to 5 wk after creation of an infarct, the three preparations of cardiomyocytes were grafted, at 1 x 106 cells/20 μL into normal and into the middle of the infarcted myocardium. The hearts were harvested and processed for histologic examinations 4 to 5 wk after the cell grafts. Histologic evaluation of the graft sites demonstrated that HL-1 cells and fetal pig cardiomyocytes formed stable grafts within the normal myocardium without any detrimental effect including arrhythmia. In addition, a marked increase in angiogenesis was observed both within the grafts and adjacent host myocardium. Electron microscopy studies demonstrated that fetal pig cardiomyocytes and the host myocardial cells were coupled with adherens-type junctions and gap junctions. Histologic examination of graft sites from infarct tissue failed to show the presence of grafted HL-1 cells, fetal, or neonatal pig cardiomyocytes. Cardiomyocyte transplantation may provide the potential means for cell-mediated gene therapy for introduction of therapeutic molecules into the heart.
UR - http://www.scopus.com/inward/record.url?scp=0031841732&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0031841732&partnerID=8YFLogxK
U2 - 10.1016/S0963-6897(98)00011-6
DO - 10.1016/S0963-6897(98)00011-6
M3 - Article
C2 - 9647433
AN - SCOPUS:0031841732
SN - 0963-6897
VL - 7
SP - 239
EP - 246
JO - Cell Transplantation
JF - Cell Transplantation
IS - 3
ER -