Abstract
The specificity for 11-deoxycortisol (11-DOC) of a monoclonal antibody (mAb), designated SCET, was changed to specificity for cortisol (CS) by site-specific mutagenesis followed by random mutagenesis. The Fab form of SCET was expressed on the surface of a phage. During the first step, mutations were introduced at 14 amino acid positions in three complementarity-determining regions (CDRs) of the V(H) domain that seemed likely to form the steroid-binding pocket. A clone, DcC16, was isolated from the resultant library with multiple mutations and this clone was shown to have CS-binding activity but also to retain high 11-DOC-binding activity. During the second step, mutations were introduced randomly into the entire V(H-) coding region of the DcC16 clone by an error-prone polymerase chain reaction, and CS-specific mutant antibodies were selected in the presence of 11-DOC as a competitor. Three representative clones were analyzed with the BIAcore instrument, and each revealed a large increase in the binding constant for CS and a decrease in that for 11-DOC. Structural models, constructed by computer simulation, indicated the probable molecular basis for these changes in specificity.
| Original language | English |
|---|---|
| Pages (from-to) | 407-415 |
| Number of pages | 9 |
| Journal | Protein Engineering |
| Volume | 12 |
| Issue number | 5 |
| DOIs | |
| Publication status | Published - 1999 |
| Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Biochemistry
- Molecular Biology