Chemogenetic sensory fMRI reveals behaviorally relevant bidirectional changes in primate somatosensory network

Toshiyuki Hirabayashi, Yuji Nagai, Yukiko Hori, Ken ichi Inoue, Ichio Aoki, Masahiko Takada, Tetsuya Suhara, Makoto Higuchi, Takafumi Minamimoto

Research output: Contribution to journalArticlepeer-review

20 Citations (Scopus)

Abstract

Concurrent genetic neuromodulation and functional magnetic resonance imaging (fMRI) in primates has provided a valuable opportunity to assess the modified brain-wide operation in the resting state. However, its application to link the network operation with behavior still remains challenging. Here, we combined chemogenetic silencing of the primary somatosensory cortex (SI) with tactile fMRI and related behaviors in macaques. Focal chemogenetic silencing of functionally identified SI hand region impaired grasping behavior. The same silencing also attenuated hand stimulation-evoked fMRI signal at both the local silencing site and the anatomically and/or functionally connected downstream grasping network, suggesting altered network operation underlying the induced behavioral impairment. Furthermore, the hand region silencing unexpectedly disinhibited foot representation with accompanying behavioral hypersensitization. These results demonstrate that focal chemogenetic silencing with sensory fMRI in macaques unveils bidirectional network changes to generate multifaceted behavioral impairments, thereby opening a pivotal window toward elucidating the causal network operation underpinning higher brain functions in primates.

Original languageEnglish
Pages (from-to)3312-3322.e5
JournalNeuron
Volume109
Issue number20
DOIs
Publication statusPublished - 20-10-2021
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • General Neuroscience

Fingerprint

Dive into the research topics of 'Chemogenetic sensory fMRI reveals behaviorally relevant bidirectional changes in primate somatosensory network'. Together they form a unique fingerprint.

Cite this