TY - JOUR
T1 - Chemoresistance to paclitaxel induces epithelial-mesenchymal transition and enhances metastatic potential for epithelial ovarian carcinoma cells
AU - Kajiyama, Hiroaki
AU - Shibata, Kiyosumi
AU - Terauchi, Mikio
AU - Yamashita, Mamoru
AU - Ino, Kazuhiko
AU - Nawa, Akihiro
AU - Kikkawa, Fumitaka
PY - 2007/8
Y1 - 2007/8
N2 - The aim of this study was to assess paclitaxel resistant-epithelial ovarian carcinoma (EOC) cells for cellular morphology, motility, and molecular changes consistent with epithelial-mesenchymal transition (EMT). The human EOC cell lines NOS-2, TAOV and SKOV-3 were continuously exposed to increasing doses of paclitaxel to establish three stable cell lines resistant to paclitaxel (NOS-PR, TAOV-PR, and SKOV-PR cells, respectively). Using these cell lines, cellular functions such as motility, invasive ability, and proliferative potential were assessed. Several molecules involved in EMT or cell invasiveness were assessed using Western blot analysis. In a peritoneal metastasis model using mice inoculated with NOS-2 or NOS-PR cells, we investigated the differences of peritoneal dissemination and survival time. NOS2-PR cells showed phenotypic changes consistent with EMT; with spindle-shaped morphology and enhanced pseudopodia formation. Western blot analysis revealed decreased expression of the epithelial adhesion molecule, E-cadherin and an increase in mesenchymal markers such as vimentin, fibronectin and smooth-muscle actin in NOS-PR cells compared to NOS-2 cells. The NOS2-PR cells displayed increased expression of Snail and Twist, EMT-regulatory transcription factors. Migratory potential in a wound assay and metastatic potential to the peritoneum of mice were markedly enhanced in NOS2-PR cells compared to NOS-2 cells. These data suggest that there is a possible link between chronic paclitaxel-resistance and induction of the EMT in EOC cells. It is possible that therapeutic benefits such as the restoration of chemosensitivity or suppression of metastasis will be enabled by gaining further insight into the mechanisms underlying chemoresistance and EMT.
AB - The aim of this study was to assess paclitaxel resistant-epithelial ovarian carcinoma (EOC) cells for cellular morphology, motility, and molecular changes consistent with epithelial-mesenchymal transition (EMT). The human EOC cell lines NOS-2, TAOV and SKOV-3 were continuously exposed to increasing doses of paclitaxel to establish three stable cell lines resistant to paclitaxel (NOS-PR, TAOV-PR, and SKOV-PR cells, respectively). Using these cell lines, cellular functions such as motility, invasive ability, and proliferative potential were assessed. Several molecules involved in EMT or cell invasiveness were assessed using Western blot analysis. In a peritoneal metastasis model using mice inoculated with NOS-2 or NOS-PR cells, we investigated the differences of peritoneal dissemination and survival time. NOS2-PR cells showed phenotypic changes consistent with EMT; with spindle-shaped morphology and enhanced pseudopodia formation. Western blot analysis revealed decreased expression of the epithelial adhesion molecule, E-cadherin and an increase in mesenchymal markers such as vimentin, fibronectin and smooth-muscle actin in NOS-PR cells compared to NOS-2 cells. The NOS2-PR cells displayed increased expression of Snail and Twist, EMT-regulatory transcription factors. Migratory potential in a wound assay and metastatic potential to the peritoneum of mice were markedly enhanced in NOS2-PR cells compared to NOS-2 cells. These data suggest that there is a possible link between chronic paclitaxel-resistance and induction of the EMT in EOC cells. It is possible that therapeutic benefits such as the restoration of chemosensitivity or suppression of metastasis will be enabled by gaining further insight into the mechanisms underlying chemoresistance and EMT.
UR - http://www.scopus.com/inward/record.url?scp=35148825636&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=35148825636&partnerID=8YFLogxK
U2 - 10.3892/ijo.31.2.277
DO - 10.3892/ijo.31.2.277
M3 - Article
C2 - 17611683
AN - SCOPUS:35148825636
SN - 1019-6439
VL - 31
SP - 277
EP - 283
JO - International journal of oncology
JF - International journal of oncology
IS - 2
ER -