TY - JOUR
T1 - Cohort-Specific Optimization of Models Predicting Preclinical Alzheimer’s Disease, to Enhance Screening Performance in the Middle of Preclinical Alzheimer’s Disease Clinical Studies
AU - Alzheimer's Disease Neuroimaging Initiative
AU - Japanese Alzheimer’s Disease Neuroimaging Initiative
AU - The A4 Study Team
AU - Sato, K.
AU - Mano, T.
AU - Ihara, R.
AU - Suzuki, K.
AU - Niimi, Y.
AU - Toda, T.
AU - Iwatsubo, T.
AU - Iwata, Atsushi
N1 - Publisher Copyright:
© 2021, Serdi and Springer Nature Switzerland AG.
PY - 2021/9
Y1 - 2021/9
N2 - Background: Models that can predict brain amyloid beta (Aβ) status more accurately have been desired to identify participants for clinical trials of preclinical Alzheimer’s disease (AD). However, potential heterogeneity between different cohorts and the limited cohort size have been the reasons preventing the development of reliable models applicable to the Asian population, including Japan. Objectives: We aim to propose a novel approach to predict preclinical AD while overcoming these constraints, by building models specifically optimized for ADNI or for J-ADNI, based on the larger samples from A4 study data. Design & Participants: This is a retrospective study including cognitive normal participants (CDR-global = 0) from A4 study, Alzheimer Disease Neuroimaging Initiative (ADNI), and Japanese-ADNI (J-ADNI) cohorts. Measurements: The model is made up of age, sex, education years, history of AD, Clinical Dementia Rating-Sum of Boxes, Preclinical Alzheimer Cognitive Composite score, and APOE genotype, to predict the degree of amyloid accumulation in amyloid PET as Standardized Uptake Value ratio (SUVr). The model was at first built based on A4 data, and we can choose at which SUVr threshold configuration the A4-based model may achieve the best performance area under the curve (AUC) when applied to the random-split half ADNI or J-ADNI subset. We then evaluated whether the selected model may also achieve better performance in the remaining ADNI or J-ADNI subsets. Result: When compared to the results without optimization, this procedure showed efficacy of AUC improvement of up to approximately 0.10 when applied to the models “without APOE;” the degree of AUC improvement was larger in the ADNI cohort than in the J-ADNI cohort. Conclusions: The obtained AUC had improved mildly when compared to the AUC in case of literature-based predetermined SUVr threshold configuration. This means our procedure allowed us to predict preclinical AD among ADNI or J-ADNI second-half samples with slightly better predictive performance. Our optimizing method may be practically useful in the middle of the ongoing clinical study of preclinical AD, as a screening to further increase the prior probability of preclinical AD before amyloid testing.
AB - Background: Models that can predict brain amyloid beta (Aβ) status more accurately have been desired to identify participants for clinical trials of preclinical Alzheimer’s disease (AD). However, potential heterogeneity between different cohorts and the limited cohort size have been the reasons preventing the development of reliable models applicable to the Asian population, including Japan. Objectives: We aim to propose a novel approach to predict preclinical AD while overcoming these constraints, by building models specifically optimized for ADNI or for J-ADNI, based on the larger samples from A4 study data. Design & Participants: This is a retrospective study including cognitive normal participants (CDR-global = 0) from A4 study, Alzheimer Disease Neuroimaging Initiative (ADNI), and Japanese-ADNI (J-ADNI) cohorts. Measurements: The model is made up of age, sex, education years, history of AD, Clinical Dementia Rating-Sum of Boxes, Preclinical Alzheimer Cognitive Composite score, and APOE genotype, to predict the degree of amyloid accumulation in amyloid PET as Standardized Uptake Value ratio (SUVr). The model was at first built based on A4 data, and we can choose at which SUVr threshold configuration the A4-based model may achieve the best performance area under the curve (AUC) when applied to the random-split half ADNI or J-ADNI subset. We then evaluated whether the selected model may also achieve better performance in the remaining ADNI or J-ADNI subsets. Result: When compared to the results without optimization, this procedure showed efficacy of AUC improvement of up to approximately 0.10 when applied to the models “without APOE;” the degree of AUC improvement was larger in the ADNI cohort than in the J-ADNI cohort. Conclusions: The obtained AUC had improved mildly when compared to the AUC in case of literature-based predetermined SUVr threshold configuration. This means our procedure allowed us to predict preclinical AD among ADNI or J-ADNI second-half samples with slightly better predictive performance. Our optimizing method may be practically useful in the middle of the ongoing clinical study of preclinical AD, as a screening to further increase the prior probability of preclinical AD before amyloid testing.
UR - http://www.scopus.com/inward/record.url?scp=85108903474&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85108903474&partnerID=8YFLogxK
U2 - 10.14283/jpad.2021.39
DO - 10.14283/jpad.2021.39
M3 - Article
C2 - 34585226
AN - SCOPUS:85108903474
SN - 2426-0266
VL - 8
SP - 503
EP - 512
JO - The journal of prevention of Alzheimer's disease
JF - The journal of prevention of Alzheimer's disease
IS - 4
ER -