TY - JOUR
T1 - Comparative Metabolomics Reveals a Bifunctional Antibacterial Conjugate from Combined-Culture of Streptomyces hygroscopicus HOK021 and Tsukamurella pulmonis TP-B0596
AU - Asamizu, Shumpei
AU - Pramana, Abrory Agus Cahya
AU - Kawai, Sung Jin
AU - Arakawa, Yoshichika
AU - Onaka, Hiroyasu
N1 - Publisher Copyright:
© 2022 American Chemical Society.
PY - 2022/9/16
Y1 - 2022/9/16
N2 - To investigate the potential for secondary metabolite biosynthesis by Streptomyces species, we employed a coculture method to discover natural bioactive products and identified specific antibacterial activity from a combined-culture of Streptomyces hygroscopicus HOK021 and Tsukamurella pulmonis TP-B0596. Molecular networking using ultrahigh performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-QTOF-MS/MS) data revealed a specific clade of metabolites in this combined-culture that were not detected in both monocultures. Using the chemical profiles, a previously unidentified conjugate between FabF inhibitor and catechol-type siderophore was successfully identified and named harundomycin A. Harundomycin A was a conjugate between the 2,4-dihydroxy-3-aminobenzoate moiety of platensimycin and N,N′-bis(2,3-dihydroxybenzoyl)-O-seryl-cysteine (bisDHBA-Ser-Cys) with a thioester linkage. Along with the production of harundomycin A, platensimycin, its thiocarboxylic acid form thioplatensimycin, enterobactin, and its degradation product N,N′-bis(2,3-dihydroxybenzoyl)-O-l-seryl-dehydroalanine (bisDHBA-Ser-Dha) were also induced in the combined-culture. Genomic data of S. hygroscopicus HOK021 and T. pulmonis TP-B0596 indicated that strain HOK021 possessed biosynthetic gene clusters for both platensimycin and enterobactin, and thereby revealed that T. pulmonis stimulates HOK021 and acts as an inducer of both of these metabolites. Although the harundomycin A was modified by bulky bisDHBA-Ser-Cys, responsible for the binding to the target molecule FabF, it showed a similar antibacterial spectrum to platensimycin, including against methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci, suggesting that the pharmacophore is platensimycin. Additionally, Chrome Azurol S assay showed that harundomycin A possesses ferric iron-chelating activity comparable to that of enterobactin. Our study demonstrated the transformation of existing natural products to bifunctional molecules driven by bacterial interaction.
AB - To investigate the potential for secondary metabolite biosynthesis by Streptomyces species, we employed a coculture method to discover natural bioactive products and identified specific antibacterial activity from a combined-culture of Streptomyces hygroscopicus HOK021 and Tsukamurella pulmonis TP-B0596. Molecular networking using ultrahigh performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-QTOF-MS/MS) data revealed a specific clade of metabolites in this combined-culture that were not detected in both monocultures. Using the chemical profiles, a previously unidentified conjugate between FabF inhibitor and catechol-type siderophore was successfully identified and named harundomycin A. Harundomycin A was a conjugate between the 2,4-dihydroxy-3-aminobenzoate moiety of platensimycin and N,N′-bis(2,3-dihydroxybenzoyl)-O-seryl-cysteine (bisDHBA-Ser-Cys) with a thioester linkage. Along with the production of harundomycin A, platensimycin, its thiocarboxylic acid form thioplatensimycin, enterobactin, and its degradation product N,N′-bis(2,3-dihydroxybenzoyl)-O-l-seryl-dehydroalanine (bisDHBA-Ser-Dha) were also induced in the combined-culture. Genomic data of S. hygroscopicus HOK021 and T. pulmonis TP-B0596 indicated that strain HOK021 possessed biosynthetic gene clusters for both platensimycin and enterobactin, and thereby revealed that T. pulmonis stimulates HOK021 and acts as an inducer of both of these metabolites. Although the harundomycin A was modified by bulky bisDHBA-Ser-Cys, responsible for the binding to the target molecule FabF, it showed a similar antibacterial spectrum to platensimycin, including against methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci, suggesting that the pharmacophore is platensimycin. Additionally, Chrome Azurol S assay showed that harundomycin A possesses ferric iron-chelating activity comparable to that of enterobactin. Our study demonstrated the transformation of existing natural products to bifunctional molecules driven by bacterial interaction.
UR - http://www.scopus.com/inward/record.url?scp=85137945415&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85137945415&partnerID=8YFLogxK
U2 - 10.1021/acschembio.2c00585
DO - 10.1021/acschembio.2c00585
M3 - Article
C2 - 36074093
AN - SCOPUS:85137945415
SN - 1554-8929
VL - 17
SP - 2664
EP - 2672
JO - ACS Chemical Biology
JF - ACS Chemical Biology
IS - 9
ER -