Comprehensive analysis of antibodies induced by vaccination with 4 kinds of avian influenza h5n1 pre-pandemic vaccines

Nobuko Ohshima, Yoshitaka Iba, Ritsuko Kubota-Koketsu, Ayami Yamasaki, Keiko Majima, Gene Kurosawa, Daisuke Hirano, Shunji Yoshida, Mototaka Sugiura, Yoshizo Asano, Yoshinobu Okuno, Yoshikazu Kurosawa

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)


Four kinds of avian-derived H5N1 influenza virus, A/Vietnam/1194/2004 (Clade 1), A/Indonesia/5/2005 (Clade 2.1), A/Qinghai/1A/2005 (Clade 2.2), and A/Anhui/1/2005 (Clade 2.3), have been stocked in Japan for use as pre-pandemic vaccines. When a pandemic occurs, these viruses would be used as vaccines in the hope of inducing immunity against the pandemic virus. We analyzed the specificity of antibodies (Abs) produced by B lymphocytes present in the blood after immunization with these vaccines. Eighteen volunteers took part in this project. After libraries of Ab-encoding sequences were constructed using blood from subjects vaccinated with these viruses, a large number of clones that encoded Abs that bound to the virus particles used as vaccines were isolated. These clones were classified into two groups according to the hemagglutination inhibition (HI) activity of the encoded Abs. While two-thirds of the clones were HI positive, the encoded Abs exhibited only restricted strain specificity. On the other hand, half of the HI-negative clones encoded Abs that bound not only to the H5N1 virus but also to the H1N1 virus; with a few exceptions, these Abs appeared to be encoded by memory B cells present before vaccination. The HI-negative clones included those encoding broadly cross-reactive Abs, some of which were encoded by non-VH1-69 germline genes. However, although this work shows that various kinds of anti-H5N1 Abs are encoded by volunteers vaccinated with pre-pandemic vaccines, broad cross-reactivity was seen only in a minority of clones, raising concern regarding the utility of these H5N1 vaccine viruses for the prevention of H5N1 pandemics.

Original languageEnglish
Article number7422
Pages (from-to)1-22
Number of pages22
JournalInternational journal of molecular sciences
Issue number19
Publication statusPublished - 01-10-2020

All Science Journal Classification (ASJC) codes

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry


Dive into the research topics of 'Comprehensive analysis of antibodies induced by vaccination with 4 kinds of avian influenza h5n1 pre-pandemic vaccines'. Together they form a unique fingerprint.

Cite this