TY - JOUR
T1 - Comprehensive genomic analysis contrasting primary colorectal cancer and matched liver metastases
AU - Shiomi, Akio
AU - Kusuhara, Masatoshi
AU - Sugino, Takashi
AU - Sugiura, Teiichi
AU - Ohshima, Keiichi
AU - Nagashima, Takeshi
AU - Urakami, Kenichi
AU - Serizawa, Masakuni
AU - Saya, Hideyuki
AU - Yamaguchi, Ken
N1 - Publisher Copyright:
© 2021 Spandidos Publications. All rights reserved.
PY - 2021/6
Y1 - 2021/6
N2 - Recent studies have revealed that colorectal cancer (CRC) displays intratumor genetic heterogeneity, and that the cancer microenvironment plays an important role in the proliferation, invasion and metastasis of CRC. The present study performed genomic analysis on paired primary CRC and synchronous colorectal liver metastasis (CRLM) tissues collected from 22 patients using whole-exome sequencing, cancer gene panels and microarray gene expression profiling. In addition, immunohistochemical analysis was used to confirm the protein expression levels of genes identified as highly expressed in CRLM by DNA microarray analysis. The present study identified 10 genes that were highly expressed in CRLM compared with in CRC, from 36,022 probes obtained from primary CRC, CRLM and normal liver tissues by gene expression analysis with DNA microarrays. Of the 10 genes identified, five were classified as encoding 'matricellular proteins' [(osteopontin, periostin, thrombospondin-2, matrix Gla protein (MGP) and glycoprotein nonmetastatic melanoma protein B (GPNMB)] and were selected for immunohisto- chemical analysis. Osteopontin was strongly expressed in CRLM (6 of 22 cases: 27.3%), but not in CRC (0 of 22: 0%; P=0.02). Periostin also exhibited strong immunoreactivity in CRLM (17 of 22: 68.2%) compared with in CRC (7 of 22: 31.8%; P=0.006). Thrombospondin-2 exhibited strong immu- noreactivity in both CRC and CRLM (54.5% in CRC, 45.5% in CRLM; P=0.55). GPNMB and MGP were rarely positive for both CRC and CRLM. A comparison of immunoreactive posi- tive factors for these five genes revealed the complexities of gene expression in CRLM. Of the cases examined, 16 (72.7%) cases of CRC showed zero or only one positive immunoreactive factor. By contrast, CRLM showed more frequent and multiple immunoreactive factors; for example, 16 cases (72.7%) shared two or more factors, which was statistically more frequent than in CRC (P=0.007). The present study revealed the genomic heterogeneity between paired primary CRC and CRLM, in terms of cancer cell microenvironment. This finding may lead to novel diagnostic and therapeutic targets in the era of genome-guided personalized cancer treatment.
AB - Recent studies have revealed that colorectal cancer (CRC) displays intratumor genetic heterogeneity, and that the cancer microenvironment plays an important role in the proliferation, invasion and metastasis of CRC. The present study performed genomic analysis on paired primary CRC and synchronous colorectal liver metastasis (CRLM) tissues collected from 22 patients using whole-exome sequencing, cancer gene panels and microarray gene expression profiling. In addition, immunohistochemical analysis was used to confirm the protein expression levels of genes identified as highly expressed in CRLM by DNA microarray analysis. The present study identified 10 genes that were highly expressed in CRLM compared with in CRC, from 36,022 probes obtained from primary CRC, CRLM and normal liver tissues by gene expression analysis with DNA microarrays. Of the 10 genes identified, five were classified as encoding 'matricellular proteins' [(osteopontin, periostin, thrombospondin-2, matrix Gla protein (MGP) and glycoprotein nonmetastatic melanoma protein B (GPNMB)] and were selected for immunohisto- chemical analysis. Osteopontin was strongly expressed in CRLM (6 of 22 cases: 27.3%), but not in CRC (0 of 22: 0%; P=0.02). Periostin also exhibited strong immunoreactivity in CRLM (17 of 22: 68.2%) compared with in CRC (7 of 22: 31.8%; P=0.006). Thrombospondin-2 exhibited strong immu- noreactivity in both CRC and CRLM (54.5% in CRC, 45.5% in CRLM; P=0.55). GPNMB and MGP were rarely positive for both CRC and CRLM. A comparison of immunoreactive posi- tive factors for these five genes revealed the complexities of gene expression in CRLM. Of the cases examined, 16 (72.7%) cases of CRC showed zero or only one positive immunoreactive factor. By contrast, CRLM showed more frequent and multiple immunoreactive factors; for example, 16 cases (72.7%) shared two or more factors, which was statistically more frequent than in CRC (P=0.007). The present study revealed the genomic heterogeneity between paired primary CRC and CRLM, in terms of cancer cell microenvironment. This finding may lead to novel diagnostic and therapeutic targets in the era of genome-guided personalized cancer treatment.
KW - Colorectal cancer
KW - Gene expression
KW - Heterogeneity
KW - Liver metastasis
KW - Microenvironment
UR - http://www.scopus.com/inward/record.url?scp=85104346330&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85104346330&partnerID=8YFLogxK
U2 - 10.3892/ol.2021.12727
DO - 10.3892/ol.2021.12727
M3 - Article
AN - SCOPUS:85104346330
SN - 1792-1074
VL - 21
JO - Oncology Letters
JF - Oncology Letters
IS - 6
M1 - 466
ER -