Computational fluid dynamic analysis of the initiation of cerebral aneurysms

Soichiro Fujimura, Kazutoshi Tanaka, Hiroyuki Takao, Takuma Okudaira, Hirokazu Koseki, Akiko Hasebe, Takashi Suzuki, Yuya Uchiyama, Toshihiro Ishibashi, Katharina Otani, Kostadin Karagiozov, Koji Fukudome, Motoharu Hayakawa, Makoto Yamamoto, Yuichi Murayama

Research output: Contribution to journalArticlepeer-review


OBJECTIVE Relationships between aneurysm initiation and hemodynamic factors remain unclear since de novo aneurysms are rarely observed. Most previous computational fluid dynamics (CFD) studies have used artificially reproduced vessel geometries before aneurysm initiation for analysis. In this study, the authors investigated the hemodynamic factors related to aneurysm initiation by using angiographic images in patients with cerebral aneurysms taken before and after an aneurysm formation. METHODS The authors identified 10 cases of de novo aneurysms in patients who underwent follow-up examinations for existing cerebral aneurysms located at a different vessel. The authors then reconstructed the vessel geometry from the images that were taken before aneurysm initiation. In addition, 34 arterial locations without aneurysms were selected as control cases. Hemodynamic parameters acting on the arterial walls were calculated by CFD analysis. RESULTS In all de novo cases, the aneurysmal initiation area corresponded to the highest wall shear stress divergence (WSSD point), which indicated that there was a strong tensile force on the arterial wall at the initiation area. The other previously reported parameters did not show such correlations. Additionally, the pressure loss coefficient (PLc) was statistically significantly higher in the de novo cases (p < 0.01). The blood flow impact on the bifurcation apex, or the secondary flow accompanied by vortices, resulted in high tensile forces and high total pressure loss acting on the vessel wall. CONCLUSIONS Aneurysm initiation may be more likely in an area where both tensile forces acting on the vessel wall and total pressure loss are large.

Original languageEnglish
Pages (from-to)335-343
Number of pages9
JournalJournal of neurosurgery
Issue number2
Publication statusPublished - 08-2022

All Science Journal Classification (ASJC) codes

  • Surgery
  • Clinical Neurology


Dive into the research topics of 'Computational fluid dynamic analysis of the initiation of cerebral aneurysms'. Together they form a unique fingerprint.

Cite this