TY - JOUR
T1 - Contribution of circulating monocytes in maintaining homeostasis of resident macrophages in postnatal and young adult mouse cochlea
AU - Miwa, Toru
AU - Rengasamy, Gowshika
AU - Liu, Zhaoyuan
AU - Ginhoux, Florent
AU - Okano, Takayuki
N1 - Publisher Copyright:
© 2024, The Author(s).
PY - 2024/12
Y1 - 2024/12
N2 - The percentage of macrophage subpopulations based on their origins in the adult cochlea remains unclear. This study aimed to elucidate the origins of cochlear macrophages during the onset phase and development of auditory function. We used three types of mice: wildtype ICR mice, colony-stimulating factor 1 receptor (Csf1r)-deficient mice, and Ms4a3Cre-Rosa tdTomato (Ms4a3 tdT) transgenic mice. Macrophages were labeled with ionized calcium-binding adapter molecule 1 (Iba1), which is specific to more mature macrophages, and CD11b, which is specific to monocyte lineage. We investigated the spatial and temporal distribution patterns of resident macrophages in the cochlea during the postnatal and early adult stages. During the adult stages, the rate of monocytes recruited from the systemic circulation increased; moreover, Iba1+/CD11b− cochlear macrophages gradually decreased with age. Fate mapping of monocytes using Ms4a3 tdT transgenic mice revealed an increased proportion of bone marrow-derived cochlear macrophages in the adult stage. Contrastingly, the proportion of yolk sac- and fetal liver-derived tissue-resident macrophages decreased steadily with age. This heterogeneity could be attributed to differences in environmental niches within the tissue or at the sub-tissue levels. Future studies should investigate the role of cochlear macrophages in homeostasis, inflammation, and other diseases, including infection, autoimmune, and metabolic diseases.
AB - The percentage of macrophage subpopulations based on their origins in the adult cochlea remains unclear. This study aimed to elucidate the origins of cochlear macrophages during the onset phase and development of auditory function. We used three types of mice: wildtype ICR mice, colony-stimulating factor 1 receptor (Csf1r)-deficient mice, and Ms4a3Cre-Rosa tdTomato (Ms4a3 tdT) transgenic mice. Macrophages were labeled with ionized calcium-binding adapter molecule 1 (Iba1), which is specific to more mature macrophages, and CD11b, which is specific to monocyte lineage. We investigated the spatial and temporal distribution patterns of resident macrophages in the cochlea during the postnatal and early adult stages. During the adult stages, the rate of monocytes recruited from the systemic circulation increased; moreover, Iba1+/CD11b− cochlear macrophages gradually decreased with age. Fate mapping of monocytes using Ms4a3 tdT transgenic mice revealed an increased proportion of bone marrow-derived cochlear macrophages in the adult stage. Contrastingly, the proportion of yolk sac- and fetal liver-derived tissue-resident macrophages decreased steadily with age. This heterogeneity could be attributed to differences in environmental niches within the tissue or at the sub-tissue levels. Future studies should investigate the role of cochlear macrophages in homeostasis, inflammation, and other diseases, including infection, autoimmune, and metabolic diseases.
UR - http://www.scopus.com/inward/record.url?scp=85181248086&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85181248086&partnerID=8YFLogxK
U2 - 10.1038/s41598-023-50634-y
DO - 10.1038/s41598-023-50634-y
M3 - Article
C2 - 38167979
AN - SCOPUS:85181248086
SN - 2045-2322
VL - 14
JO - Scientific reports
JF - Scientific reports
IS - 1
M1 - 62
ER -