Decrease in cholesterol in the cell membrane is essential for Nrf2 activation by quercetin

Miyoko Matsushima, Haruka Nose, Hikaru Tsuzuki, Masahiro Takekoshi, Yuto Kusatsugu, Hinata Taniguchi, Tomoko Ohdachi, Naozumi Hashimoto, Mitsuo Sato, Tsutomu Kawabe

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)


Quercetin is a flavonoid with various cytoprotective effects. We previously reported that quercetin exerts anti-allergic, anti-oxidative, and anti-fibrotic activities via the induction of heme oxygenase (HO)-1. However, the mechanisms by which quercetin induces HO-1 to exhibit cytoprotective effects are poorly understood. We focused on its action on the cell membrane, which is the first part of the cell to interact with the extracellular environment. The cell membrane contains lipid rafts and caveolae, which play important roles in cellular signaling. A recent study showed that nuclear factor E2-related factor 2 (Nrf2), a transcription factor regulating anti-oxidative enzymes including HO-1, interacts with caveolin-1 (Cav-1), a component of caveolae, to regulate cellular anti-oxidative capacity. In this study, we investigated the changes in the cell membrane that leads to the induction of HO-1 by quercetin. Quercetin decreased the amount of cholesterol in the raft fractions, which in turn promoted the induction of HO-1. It also changed the composition of the lipid rafts and decreased and increased the expression of Cav-1 in the raft and non-raft fractions, respectively. Nrf2, which was localized in the cell membrane under resting conditions, was translocated along with Cav-1 to the nucleus after exposure to quercetin. These findings indicate for the first time that the HO-1-dependent cytoprotective effects of quercetin are mediated by the structural changes in lipid rafts brought about by decreasing the amount of cholesterol in the cell membrane, which thereby results in the translocation of the Cav-1-Nrf2 complex to the nucleus and induces the expression of HO-1.

Original languageEnglish
Article number109329
JournalJournal of Nutritional Biochemistry
Publication statusPublished - 06-2023
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Endocrinology, Diabetes and Metabolism
  • Biochemistry
  • Molecular Biology
  • Nutrition and Dietetics
  • Clinical Biochemistry


Dive into the research topics of 'Decrease in cholesterol in the cell membrane is essential for Nrf2 activation by quercetin'. Together they form a unique fingerprint.

Cite this