TY - JOUR
T1 - Decreased expression of germinal center-associated nuclear protein is involved in chromosomal instability in malignant gliomas
AU - Ohta, Kazutaka
AU - Kuwahara, Kazuhiko
AU - Zhang, Zhenhuan
AU - Makino, Keishi
AU - Komohara, Yoshihiro
AU - Nakamura, Hideo
AU - Kuratsu, Jun Ichi
AU - Sakaguchi, Nobuo
PY - 2009/11
Y1 - 2009/11
N2 - Malignant glioma (MG) is highly proliferative and invasive, with the malignant characteristics associated with aneuploidy and chromosomal instability (CIN). Here, we found that the level of germinal center-associated nuclear protein (GANP), a mammalian homologue of yeast Sac3, was markedly decreased in MGs with a poor prognosis; and thus we explored the effect of its decrease on cell-cycle progression of MG cell lines. Glioblastomas showed a significantly lower level of ganp mRNA than anaplastic astrocytomas, as measured by real-time reverse transcription-PCR, in 101 cases of adult MG. MGs of ganpLow expression displayed more malignant characteristics, with loss of heterozygosity on chromosome 10, epidermal growth factor receptor gene amplification, and significantly poorer prognosis than the ganpHigh group. Human diploid fibroblasts depleted of ganp mRNA by the RNA interference (RNAi) method showed a decreased percentage of S-phase cells and a cellular-senescence phenotype. MG cell lines harboring abnormalities of various cell-cycle checkpoint molecules displayed slippage of mitotic checkpoints and an increased proportion of hyperploid cells after ganp RNAi-treatment. These results suggest that GANP protects cells from cellular senescence caused by DNA damage and that a significant decrease in GANP expression leads to malignancy by generating hyperploidy and CIN. (Cancer Sci 2009).
AB - Malignant glioma (MG) is highly proliferative and invasive, with the malignant characteristics associated with aneuploidy and chromosomal instability (CIN). Here, we found that the level of germinal center-associated nuclear protein (GANP), a mammalian homologue of yeast Sac3, was markedly decreased in MGs with a poor prognosis; and thus we explored the effect of its decrease on cell-cycle progression of MG cell lines. Glioblastomas showed a significantly lower level of ganp mRNA than anaplastic astrocytomas, as measured by real-time reverse transcription-PCR, in 101 cases of adult MG. MGs of ganpLow expression displayed more malignant characteristics, with loss of heterozygosity on chromosome 10, epidermal growth factor receptor gene amplification, and significantly poorer prognosis than the ganpHigh group. Human diploid fibroblasts depleted of ganp mRNA by the RNA interference (RNAi) method showed a decreased percentage of S-phase cells and a cellular-senescence phenotype. MG cell lines harboring abnormalities of various cell-cycle checkpoint molecules displayed slippage of mitotic checkpoints and an increased proportion of hyperploid cells after ganp RNAi-treatment. These results suggest that GANP protects cells from cellular senescence caused by DNA damage and that a significant decrease in GANP expression leads to malignancy by generating hyperploidy and CIN. (Cancer Sci 2009).
UR - http://www.scopus.com/inward/record.url?scp=71049138130&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=71049138130&partnerID=8YFLogxK
U2 - 10.1111/j.1349-7006.2009.01293.x
DO - 10.1111/j.1349-7006.2009.01293.x
M3 - Article
C2 - 19686285
AN - SCOPUS:71049138130
SN - 1347-9032
VL - 100
SP - 2069
EP - 2076
JO - Cancer science
JF - Cancer science
IS - 11
ER -