Design and development of low-loss transformer for powering small implantable medical devices

Kenji Shiba, Akira Morimasa, Harutoyo Hirano

Research output: Contribution to journalArticlepeer-review

51 Citations (Scopus)

Abstract

Small implantable medical devices, such as wireless capsule endoscopes, that can be swallowed have previously been developed. However, these devices cannot continuously operate for more than 8 h because of battery limitations; moreover, additional functionalities cannot be introduced. This paper proposes a design method for a high-efficiency energy transmission transformer (ETT) that can transmit energy transcutaneously to small implantable medical devices using electromagnetic induction. First, the authors propose an unconventional design method to develop such a high-efficiency ETT. This method can be readily used to calculate the exact transmission efficiency for changes in the material and design parameters (i.e., the magnetic material, transmission frequency, load resistance, etc.). Next, the ac-to-ac energy transmission efficiency is calculated and compared with experimental measurements. Then, suitable conditions for practical transmission are identified. A maximum efficiency of 33.1% can be obtained at a transmission frequency of 500 kHz and a receiving power of 100 mW for a receiving coil size ofØ5mm ×20mm. Future design optimization is possible by using this method.

Original languageEnglish
Article number5437510
Pages (from-to)77-85
Number of pages9
JournalIEEE Transactions on Biomedical Circuits and Systems
Volume4
Issue number2
DOIs
Publication statusPublished - 04-2010
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Biomedical Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Design and development of low-loss transformer for powering small implantable medical devices'. Together they form a unique fingerprint.

Cite this