Development of a Current Injection—Type Impedance Measurement System for Monitoring Soil Water Content and Ion Concentration

Ryuki Shigemasu, Yuki Teraoka, Satoshi Ota, Harutoyo Hirano, Keita Yasutomi, Shoji Kawahito, Masato Futagawa

Research output: Contribution to journalArticlepeer-review

Abstract

This study was conducted with the aim of developing a circuit system that enables the measurement of the moisture content and ion concentration with a simple circuit configuration. Our previous studies have shown that soil can be represented by an equivalent circuit of a parallel circuit of resistors and capacitors. We designed a circuit that can convert the voltage transient characteristics of the soil when a current is applied to it into a square wave and output frequency information and developed an algorithm to analyze the two types of square waves and calculate R and C. Normal operation was confirmed in the range of 10 kΩ–1 MΩ for the designed circuit, and the calculation algorithm matched within a maximum error of 5%, thus confirming the validity of the program. These successfully confirmed the changes in the water content and ionic concentration. The soil moisture content measurement succeeded in measuring a maximum error of about 10%, except at one point, and the soil ion concentration measurement succeeded in measuring a maximum error of 6.6%. A new, simple, noise-resistant moisture content and ion concentration measurement circuit system with square wave output has been realized.

Original languageEnglish
Article number3509
JournalSensors
Volume22
Issue number9
DOIs
Publication statusPublished - 01-05-2022
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Analytical Chemistry
  • Information Systems
  • Atomic and Molecular Physics, and Optics
  • Biochemistry
  • Instrumentation
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Development of a Current Injection—Type Impedance Measurement System for Monitoring Soil Water Content and Ion Concentration'. Together they form a unique fingerprint.

Cite this