Development of a new coordinate calibration phantom for a light-section-based optical surface monitoring system

Tatsunori Saito, Naoki Hayashi, Hiroshi Amma, Kazuki Onishi, Yuta Muraki, Masashi Nozue

Research output: Contribution to journalArticlepeer-review

Abstract

A calibration phantom made of Derlin requires manual translational and rotational adjustments when calibrating a light-section-based optical surface monitoring system (VOXELAN) with a phantom material that insufficiently reflects the red-slit laser of the system. This study aimed to develop a new calibration phantom using different materials and to propose a procedure that minimizes setup errors. The new phantom, primarily made of PET100, which exhibits good reflectivity without scattering or attenuating the red-slit laser at the phantom surface, was shaped in a manner similar to that of previous designs. The detection accuracy and stability were evaluated using six different regions of interest (ROIs) and compared with previous phantom designs. The coordinate coincidence between the machine and VOXELAN was compared for both phantom designs. The detection accuracy and stability of the new phantom in the reference ROI setting were found to be better than those of previous phantoms. In the lateral, longitudinal, and vertical directions, the coordinate coincidences in translational directions for the previous phantom were obtained at 1.07 ± 0.66, 1.46 ± 0.47, and 0.26 ± 0.83 mm, whereas those for the new phantom were obtained at 0.28 ± 0.21, 0.18 ± 0.30, and − 0.30 ± 0.29 mm, respectively. The rotational errors of the two phantoms were identical. The new phantom exhibited improved detection stability because of its good reflectivity. Additionally, the new placement procedure was linked to the six-degrees-of-freedom couch. A combination of the new phantom and its new placement procedure is suitable for coordinate calibration of VOXELAN.

Original languageEnglish
Pages (from-to)366-372
Number of pages7
JournalRadiological Physics and Technology
Volume16
Issue number3
DOIs
Publication statusPublished - 09-2023

All Science Journal Classification (ASJC) codes

  • Radiation
  • Physical Therapy, Sports Therapy and Rehabilitation
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Development of a new coordinate calibration phantom for a light-section-based optical surface monitoring system'. Together they form a unique fingerprint.

Cite this