Development of an automatic ultrasound image classification system for pressure injury based on deep learning

Masaru Matsumoto, Mikihiko Karube, Gojiro Nakagami, Aya Kitamura, Nao Tamai, Yuka Miura, Atsuo Kawamoto, Masakazu Kurita, Tomomi Miyake, Chieko Hayashi, Akiko Kawasaki, Hiromi Sanada

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

The classification of ultrasound (US) findings of pressure injury is important to select the appropriate treatment and care based on the state of the deep tissue, but it depends on the operator’s skill in image interpretation. Therefore, US for pressure injury is a procedure that can only be performed by a limited number of highly trained medical professionals. This study aimed to develop an automatic US image classification system for pressure injury based on deep learning that can be used by non-specialists who do not have a high skill in image interpretation. A total 787 training data were collected at two hospitals in Japan. The US images of pressure injuries were assessed using the deep learning-based classification tool according to the following visual evidence: unclear layer structure, cobblestone-like pattern, cloud-like pattern, and anechoic pattern. Thereafter, accuracy was assessed using two parameters: detection performance, and the value of the intersection over union (IoU) and DICE score. A total of 73 images were analyzed as test data. Of all 73 images with an unclear layer structure, 7 showed a cobblestone-like pattern, 14 showed a cloud-like pattern, and 15 showed an anechoic area. All four US findings showed a detection performance of 71.4–100%, with a mean value of 0.38–0.80 for IoU and 0.51–0.89 for the DICE score. The results show that US findings and deep learning-based classification can be used to detect deep tissue pressure injuries.

Original languageEnglish
Article number7817
JournalApplied Sciences (Switzerland)
Volume11
Issue number17
DOIs
Publication statusPublished - 01-09-2021
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • General Materials Science
  • Instrumentation
  • General Engineering
  • Process Chemistry and Technology
  • Computer Science Applications
  • Fluid Flow and Transfer Processes

Fingerprint

Dive into the research topics of 'Development of an automatic ultrasound image classification system for pressure injury based on deep learning'. Together they form a unique fingerprint.

Cite this