TY - JOUR
T1 - Development of an in vitro carcinogenesis model of human papillomavirus-induced cervical adenocarcinoma
AU - Zhang, Mengzhu
AU - Kiyono, Tohru
AU - Aoki, Kazunori
AU - Goshima, Naoki
AU - Kobayashi, Shin
AU - Hiranuma, Kengo
AU - Shiraishi, Kouya
AU - Saya, Hideyuki
AU - Nakahara, Tomomi
N1 - Publisher Copyright:
© 2021 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
PY - 2022/3
Y1 - 2022/3
N2 - Cervical adenocarcinoma (ADC) is the second most common pathological subtype of cervical cancer after squamous cell carcinoma. It accounts for approximately 20% of cervical cancers, and the incidence has increased in the past few decades, particularly among young patients. The persistent infection of high-risk human papillomavirus (HPV) is responsible for most cervical ADC. However, almost all available in vitro models are designed to study the carcinogenesis of cervical squamous cell carcinoma. To gain better insights into molecular background of ADC, we aimed to establish an in vitro carcinogenesis model of ADC. We previously reported the establishment of an in vitro model for cervical squamous cell carcinoma by introducing defined viral and cellular oncogenes, HPV16 E6 and E7, c-MYC, and activated RAS to human cervical keratinocytes. In this study, the expression of potential lineage-specifying factors and/or SMAD4 reduction was introduced in addition to the defined four oncogenes to direct carcinogenesis toward ADC. The cell properties associated with the cell lineage were analyzed in monolayer and organoid cultures and the tumors in mouse xenografts. In the cells expressing Forkhead box A2 (FOXA2), apparent changes in cell properties were observed, such as elevated expression of columnar cell markers and decreased expression of squamous cell markers. Strikingly, the histopathology of tumors expressing FOXA2 resembled cervical ADC, proposing that FOXA2 plays a vital role in dictating the histopathology of cervical cancers.
AB - Cervical adenocarcinoma (ADC) is the second most common pathological subtype of cervical cancer after squamous cell carcinoma. It accounts for approximately 20% of cervical cancers, and the incidence has increased in the past few decades, particularly among young patients. The persistent infection of high-risk human papillomavirus (HPV) is responsible for most cervical ADC. However, almost all available in vitro models are designed to study the carcinogenesis of cervical squamous cell carcinoma. To gain better insights into molecular background of ADC, we aimed to establish an in vitro carcinogenesis model of ADC. We previously reported the establishment of an in vitro model for cervical squamous cell carcinoma by introducing defined viral and cellular oncogenes, HPV16 E6 and E7, c-MYC, and activated RAS to human cervical keratinocytes. In this study, the expression of potential lineage-specifying factors and/or SMAD4 reduction was introduced in addition to the defined four oncogenes to direct carcinogenesis toward ADC. The cell properties associated with the cell lineage were analyzed in monolayer and organoid cultures and the tumors in mouse xenografts. In the cells expressing Forkhead box A2 (FOXA2), apparent changes in cell properties were observed, such as elevated expression of columnar cell markers and decreased expression of squamous cell markers. Strikingly, the histopathology of tumors expressing FOXA2 resembled cervical ADC, proposing that FOXA2 plays a vital role in dictating the histopathology of cervical cancers.
KW - FOXA2
KW - cervical adenocarcinoma
KW - columnar lineage differentiation
KW - human papillomavirus-driven cancer
KW - in vitro carcinogenesis model
UR - http://www.scopus.com/inward/record.url?scp=85122123763&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85122123763&partnerID=8YFLogxK
U2 - 10.1111/cas.15246
DO - 10.1111/cas.15246
M3 - Article
C2 - 34932848
AN - SCOPUS:85122123763
SN - 1347-9032
VL - 113
SP - 904
EP - 915
JO - Cancer science
JF - Cancer science
IS - 3
ER -