TY - JOUR
T1 - Difference in the Inhibitory Effect of Thiol Compounds and Demetallation Rates from the Zn(II) Active Site of Metallo-β-lactamases (IMP-1 and IMP-6) Associated with a Single Amino Acid Substitution
AU - Yamaguchi, Yoshihiro
AU - Kato, Koichi
AU - Ichimaru, Yoshimi
AU - Uenosono, Yuya
AU - Tawara, Sakiko
AU - Ito, Rio
AU - Matsuse, Natsuki
AU - Wachino, Jun Ichi
AU - Toma-Fukai, Sachiko
AU - Jin, Wanchun
AU - Arakawa, Yoshichika
AU - Otsuka, Masami
AU - Fujita, Mikako
AU - Fukuishi, Nobuyuki
AU - Sugiura, Kirara
AU - Imai, Masanori
AU - Kurosaki, Hiromasa
N1 - Publisher Copyright:
© 2022 American Chemical Society.
PY - 2023/1/13
Y1 - 2023/1/13
N2 - Gram-negative bacteria producing metallo-β-lactamases (MBLs) have become a considerable threat to public health. MBLs including the IMP, VIM, and NDM types are Zn(II) enzymes that hydrolyze the β-lactam ring present in a broad range of antibiotics, such as N-benzylpenicillin, meropenem, and imipenem. Among IMPs, IMP-1 and IMP-6 differ in a single amino acid substitution at position 262, where serine in IMP-1 is replaced by glycine in IMP-6, conferring a change in substrate specificity. To investigate how this mutation influences enzyme function, we examined lactamase inhibition by thiol compounds. Ethyl 3-mercaptopropionate acted as a competitive inhibitor of IMP-1, but a noncompetitive inhibitor of IMP-6. A comparison of the crystal structures previously reported for IMP-1 (PDB code: 5EV6) and IMP-6 (PDB code: 6LVJ) revealed a hydrogen bond between the side chain of Ser262 and Cys221 in IMP-1 but the absence of hydrogen bond in IMP-6, which affects the Zn2 coordination sphere in its active site. We investigated the demetallation rates of IMP-1 and IMP-6 in the presence of chelating agent ethylenediaminetetraacetic acid (EDTA) and found that the demetallation reactions had fast and slow phases with a first-order rate constant (kfast = 1.76 h-1, kslow = 0.108 h-1 for IMP-1, and kfast = 14.0 h-1 and kslow = 1.66 h-1 for IMP-6). The difference in the flexibility of the Zn2 coordination sphere between IMP-1 and IMP-6 may influence the demetallation rate, the catalytic efficiency against β-lactam antibiotics, and the inhibitory effect of thiol compounds.
AB - Gram-negative bacteria producing metallo-β-lactamases (MBLs) have become a considerable threat to public health. MBLs including the IMP, VIM, and NDM types are Zn(II) enzymes that hydrolyze the β-lactam ring present in a broad range of antibiotics, such as N-benzylpenicillin, meropenem, and imipenem. Among IMPs, IMP-1 and IMP-6 differ in a single amino acid substitution at position 262, where serine in IMP-1 is replaced by glycine in IMP-6, conferring a change in substrate specificity. To investigate how this mutation influences enzyme function, we examined lactamase inhibition by thiol compounds. Ethyl 3-mercaptopropionate acted as a competitive inhibitor of IMP-1, but a noncompetitive inhibitor of IMP-6. A comparison of the crystal structures previously reported for IMP-1 (PDB code: 5EV6) and IMP-6 (PDB code: 6LVJ) revealed a hydrogen bond between the side chain of Ser262 and Cys221 in IMP-1 but the absence of hydrogen bond in IMP-6, which affects the Zn2 coordination sphere in its active site. We investigated the demetallation rates of IMP-1 and IMP-6 in the presence of chelating agent ethylenediaminetetraacetic acid (EDTA) and found that the demetallation reactions had fast and slow phases with a first-order rate constant (kfast = 1.76 h-1, kslow = 0.108 h-1 for IMP-1, and kfast = 14.0 h-1 and kslow = 1.66 h-1 for IMP-6). The difference in the flexibility of the Zn2 coordination sphere between IMP-1 and IMP-6 may influence the demetallation rate, the catalytic efficiency against β-lactam antibiotics, and the inhibitory effect of thiol compounds.
UR - http://www.scopus.com/inward/record.url?scp=85144301750&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85144301750&partnerID=8YFLogxK
U2 - 10.1021/acsinfecdis.2c00395
DO - 10.1021/acsinfecdis.2c00395
M3 - Article
C2 - 36519431
AN - SCOPUS:85144301750
SN - 2373-8227
VL - 9
SP - 65
EP - 78
JO - ACS Infectious Diseases
JF - ACS Infectious Diseases
IS - 1
ER -