TY - JOUR
T1 - Different acceptor specificities of two glucuronyltransferases involved in the biosynthesis of HNK-1 carbohydrate
AU - Kakuda, Shinako
AU - Sato, Yuki
AU - Tonoyama, Yasuhiro
AU - Oka, Shogo
AU - Kawasaki, Toshisuke
PY - 2005/2
Y1 - 2005/2
N2 - The biosynthesis of HNK-1 carbohydrate is mainly regulated by two glucuronyltransferases (GlcAT-P and GlcAT-S) and a sulfotransferase (HNK-1 ST). To determine how the two glucuronyltransferases are involved in the biosynthesis of the HNK-1 carbohydrate, we prepared soluble forms of GlcAT-P and GlcAT-S fused with the IgG-binding domain of protein A and then compared the enzymatic properties of the two enzymes. Both GlcAT-P and GlcAT-S transferred glucuronic acid (GlcA) not only to a glycoprotein acceptor, asialoorosomucoid (ASOR), but also to a glycolipid acceptor, paragloboside. The activity of GlcAT-P toward ASOR was enhanced fivefold in the presence of sphingomyelin, but there were no effects on that of GlcAT-S. The activities of the two enzymes toward paragloboside were only detected in the presence of phospholipids such as phosphatidylinositol. Kinetic analysis revealed that the Km value of GlcAT-P for ASOR was 10 times lower than that for paragloboside. Furthermore, acceptor specificity analysis involving various oligosaccarides revealed that GlcAT-P specifically recognized N-acetyllactosamine (Galβ 1-4GlcNAc) at the nonreducing terminals of acceptor substrates. In contrast, GlcAT-S recognized not only the terminal Galβ1-4GlcNAc structure but also the Galβ1-3GlcNAc structure and showed the highest activity toward triantennary N-linked oligosaccharides. GlcAT-P transferred GlcA to NCAM about twice as much as to ASOR, whereas GlcAT-S did not show any activity toward NCAM. These lines of evidence indicate that these two enzymes have significantly different acceptor specificities, suggesting that they may synthesize functionally and structurally different HNK-1 carbohydrates in the nervous system.
AB - The biosynthesis of HNK-1 carbohydrate is mainly regulated by two glucuronyltransferases (GlcAT-P and GlcAT-S) and a sulfotransferase (HNK-1 ST). To determine how the two glucuronyltransferases are involved in the biosynthesis of the HNK-1 carbohydrate, we prepared soluble forms of GlcAT-P and GlcAT-S fused with the IgG-binding domain of protein A and then compared the enzymatic properties of the two enzymes. Both GlcAT-P and GlcAT-S transferred glucuronic acid (GlcA) not only to a glycoprotein acceptor, asialoorosomucoid (ASOR), but also to a glycolipid acceptor, paragloboside. The activity of GlcAT-P toward ASOR was enhanced fivefold in the presence of sphingomyelin, but there were no effects on that of GlcAT-S. The activities of the two enzymes toward paragloboside were only detected in the presence of phospholipids such as phosphatidylinositol. Kinetic analysis revealed that the Km value of GlcAT-P for ASOR was 10 times lower than that for paragloboside. Furthermore, acceptor specificity analysis involving various oligosaccarides revealed that GlcAT-P specifically recognized N-acetyllactosamine (Galβ 1-4GlcNAc) at the nonreducing terminals of acceptor substrates. In contrast, GlcAT-S recognized not only the terminal Galβ1-4GlcNAc structure but also the Galβ1-3GlcNAc structure and showed the highest activity toward triantennary N-linked oligosaccharides. GlcAT-P transferred GlcA to NCAM about twice as much as to ASOR, whereas GlcAT-S did not show any activity toward NCAM. These lines of evidence indicate that these two enzymes have significantly different acceptor specificities, suggesting that they may synthesize functionally and structurally different HNK-1 carbohydrates in the nervous system.
UR - http://www.scopus.com/inward/record.url?scp=13644254933&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=13644254933&partnerID=8YFLogxK
U2 - 10.1093/glycob/cwi001
DO - 10.1093/glycob/cwi001
M3 - Article
C2 - 15470230
AN - SCOPUS:13644254933
SN - 0959-6658
VL - 15
SP - 203
EP - 210
JO - Glycobiology
JF - Glycobiology
IS - 2
ER -