Direct cell-cell contact between mature osteoblasts and osteoclasts dynamically controls their functions in vivo

Masayuki Furuya, Junichi Kikuta, Sayumi Fujimori, Shigeto Seno, Hiroki Maeda, Mai Shirazaki, Maki Uenaka, Hiroki Mizuno, Yoriko Iwamoto, Akito Morimoto, Kunihiko Hashimoto, Takeshi Ito, Yukihiro Isogai, Masafumi Kashii, Takashi Kaito, Shinsuke Ohba, Ung Il Chung, Alexander C. Lichtler, Kazuya Kikuchi, Hideo MatsudaHideki Yoshikawa, Masaru Ishii

Research output: Contribution to journalArticlepeer-review

Abstract

Bone homeostasis is regulated by communication between bone-forming mature osteoblasts (mOBs) and bone-resorptive mature osteoclasts (mOCs). However, the spatial-temporal relationship and mode of interaction in vivo remain elusive. Here we show, by using an intravital imaging technique, that mOB and mOC functions are regulated via direct cell-cell contact between these cell types. The mOBs and mOCs mainly occupy discrete territories in the steady state, although direct cell-cell contact is detected in spatiotemporally limited areas. In addition, a pH-sensing fluorescence probe reveals that mOCs secrete protons for bone resorption when they are not in contact with mOBs, whereas mOCs contacting mOBs are non-resorptive, suggesting that mOBs can inhibit bone resorption by direct contact. Intermittent administration of parathyroid hormone causes bone anabolic effects, which lead to a mixed distribution of mOBs and mOCs, and increase cell-cell contact. This study reveals spatiotemporal intercellular interactions between mOBs and mOCs affecting bone homeostasis in vivo.

Original languageEnglish
Article number300
JournalNature communications
Volume9
Issue number1
DOIs
Publication statusPublished - 01-12-2018
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Direct cell-cell contact between mature osteoblasts and osteoclasts dynamically controls their functions in vivo'. Together they form a unique fingerprint.

Cite this