TY - JOUR
T1 - Disinfection of otorhinolaryngological endoscopes with electrolyzed acid water
T2 - A cross-sectional and multicenter study
AU - Okano, Takayuki
AU - Sakamoto, Tatsunori
AU - Ishikawa, Seiji
AU - Sakamoto, Susumu
AU - Mizuta, Masanobu
AU - Kitada, Yuji
AU - Mizuno, Keisuke
AU - Hayashi, Hideki
AU - Suzuki, Youichi
AU - Nakano, Takashi
AU - Omori, Koichi
N1 - Publisher Copyright:
© 2022 Okano et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2022/10
Y1 - 2022/10
N2 - Glutaraldehyde, a germicide for reprocessing endoscopes that is important for hygiene in the clinic, might be hazardous to humans. Electrolyzed acid water (EAW) has a broad antimicrobial spectrum and safety profile and might be a glutaraldehyde alternative. We sought to assess EAW disinfection of flexible endoscopes in clinical otorhinolaryngological settings and its in vitro inactivation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and bacteria commonly isolated in otorhinolaryngology. Ninety endoscopes were tested for bacterial contamination before and after endoscope disinfection with EAW. The species and strains of bacteria were studied. The in vitro inactivation of bacteria and SARS-CoV-2 by EAW was investigated to determine the efficacy of endoscope disinfection. More than 20 colony-forming units of bacteria at one or more sampling sites were detected in 75/90 microbiological cultures of samples from clinically used endoscopes (83.3%). The most common genus detected was Staphylococcus followed by Cutibacterium and Corynebacterium at all sites including the ears, noses, and throats. In the in vitro study, more than 107 CFU/mL of all bacterial species examined were reduced to below the detection limit (<10 CFU/mL) within 30 s after contact with EAW. When SARS-CoV-2 was treated with a 99-fold volume of EAW, the initial viral titer (> 105 PFU) was decreased to less than 5 PFU. Effective inactivation of SARS-CoV-2 was also observed with a 19:1 ratio of EAW to the virus. EAW effectively reprocessed flexible endoscopes contributing to infection control in medical institutions in the era of the coronavirus disease 2019 pandemic.
AB - Glutaraldehyde, a germicide for reprocessing endoscopes that is important for hygiene in the clinic, might be hazardous to humans. Electrolyzed acid water (EAW) has a broad antimicrobial spectrum and safety profile and might be a glutaraldehyde alternative. We sought to assess EAW disinfection of flexible endoscopes in clinical otorhinolaryngological settings and its in vitro inactivation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and bacteria commonly isolated in otorhinolaryngology. Ninety endoscopes were tested for bacterial contamination before and after endoscope disinfection with EAW. The species and strains of bacteria were studied. The in vitro inactivation of bacteria and SARS-CoV-2 by EAW was investigated to determine the efficacy of endoscope disinfection. More than 20 colony-forming units of bacteria at one or more sampling sites were detected in 75/90 microbiological cultures of samples from clinically used endoscopes (83.3%). The most common genus detected was Staphylococcus followed by Cutibacterium and Corynebacterium at all sites including the ears, noses, and throats. In the in vitro study, more than 107 CFU/mL of all bacterial species examined were reduced to below the detection limit (<10 CFU/mL) within 30 s after contact with EAW. When SARS-CoV-2 was treated with a 99-fold volume of EAW, the initial viral titer (> 105 PFU) was decreased to less than 5 PFU. Effective inactivation of SARS-CoV-2 was also observed with a 19:1 ratio of EAW to the virus. EAW effectively reprocessed flexible endoscopes contributing to infection control in medical institutions in the era of the coronavirus disease 2019 pandemic.
UR - http://www.scopus.com/inward/record.url?scp=85139571147&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85139571147&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0275488
DO - 10.1371/journal.pone.0275488
M3 - Article
C2 - 36191019
AN - SCOPUS:85139571147
SN - 1932-6203
VL - 17
JO - PloS one
JF - PloS one
IS - 10 October
M1 - e0275488
ER -