Distinct oxylipin alterations in diverse models of cystic kidney diseases

Md Monirujjaman, Jessay G. Devassy, Tamio Yamaguchi, Nikhil Sidhu, Masanori Kugita, Melissa Gabbs, Shizuko Nagao, Jing Zhou, Amir Ravandi, Harold M. Aukema

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

Cystic kidney diseases are characterized by multiple renal cysts and are the leading cause of inherited renal disease. Oxylipins are bioactive lipids derived from fatty acids formed via cyclooxygenase, lipoxygenase and cytochrome P450 activity, and are important regulators of renal health and disease. Oxylipins are altered in nephronophthisis, a type of cystic kidney disease. To further investigate and to determine whether other cystic renal diseases share these abnormalities, a targeted lipidomic analysis of renal oxylipins was performed in orthologous models of autosomal dominant polycystic kidney disease 1 (Mx1Cre+ Pkd1flox/flox mouse) and 2 (Pkd2ws25/− mouse), autosomal recessive polycystic kidney disease (PCK rat) and nephronophthisis (jck/jck mouse). Kidney cyclooxygenase oxylipins were consistently higher in all diseased kidneys, even in very early stage disease. On the other hand, cytochrome P450 epoxygenase derived oxylipins were lower only in the autosomal recessive polycystic kidney disease and nephronophthisis models, while lipoxygenase and cytochrome P450 hydroxylase derived oxylipins were lower only in nephronophthisis. Sex effects on renal oxylipin alterations were observed but they did not always coincide with sex effects on disease. For oxylipins with sex effects, arachidonic acid derived oxylipins formed via cyclooxygenases and lipoxygenases were higher in females, while oxylipins from other fatty acids and via cytochrome P450 enzymes were higher in males. The consistent and unique patterns of oxylipin alterations in the different models indicates the importance of these bioactive lipids in cystic renal diseases, suggesting that pharmacological agents (e.g. cyclooxygenase inhibitors) may be useful in treating these disorders, for which effective treatment remains elusive.

Original languageEnglish
Pages (from-to)1562-1574
Number of pages13
JournalBiochimica et Biophysica Acta - Molecular and Cell Biology of Lipids
Volume1862
Issue number12
DOIs
Publication statusPublished - 01-12-2017

Fingerprint

Oxylipins
Cystic Kidney Diseases
Cytochrome P-450 Enzyme System
Kidney
Prostaglandin-Endoperoxide Synthases
Autosomal Recessive Polycystic Kidney
Lipoxygenase
Fatty Acids
Lipoxygenases
Lipids
Autosomal Dominant Polycystic Kidney
Cyclooxygenase Inhibitors
Kidney Diseases
Mixed Function Oxygenases
Arachidonic Acid

All Science Journal Classification (ASJC) codes

  • Molecular Biology
  • Cell Biology

Cite this

Monirujjaman, Md ; Devassy, Jessay G. ; Yamaguchi, Tamio ; Sidhu, Nikhil ; Kugita, Masanori ; Gabbs, Melissa ; Nagao, Shizuko ; Zhou, Jing ; Ravandi, Amir ; Aukema, Harold M. / Distinct oxylipin alterations in diverse models of cystic kidney diseases. In: Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids. 2017 ; Vol. 1862, No. 12. pp. 1562-1574.
@article{f6aa26e567a74937934a31628d6e0daa,
title = "Distinct oxylipin alterations in diverse models of cystic kidney diseases",
abstract = "Cystic kidney diseases are characterized by multiple renal cysts and are the leading cause of inherited renal disease. Oxylipins are bioactive lipids derived from fatty acids formed via cyclooxygenase, lipoxygenase and cytochrome P450 activity, and are important regulators of renal health and disease. Oxylipins are altered in nephronophthisis, a type of cystic kidney disease. To further investigate and to determine whether other cystic renal diseases share these abnormalities, a targeted lipidomic analysis of renal oxylipins was performed in orthologous models of autosomal dominant polycystic kidney disease 1 (Mx1Cre+ Pkd1flox/flox mouse) and 2 (Pkd2ws25/− mouse), autosomal recessive polycystic kidney disease (PCK rat) and nephronophthisis (jck/jck mouse). Kidney cyclooxygenase oxylipins were consistently higher in all diseased kidneys, even in very early stage disease. On the other hand, cytochrome P450 epoxygenase derived oxylipins were lower only in the autosomal recessive polycystic kidney disease and nephronophthisis models, while lipoxygenase and cytochrome P450 hydroxylase derived oxylipins were lower only in nephronophthisis. Sex effects on renal oxylipin alterations were observed but they did not always coincide with sex effects on disease. For oxylipins with sex effects, arachidonic acid derived oxylipins formed via cyclooxygenases and lipoxygenases were higher in females, while oxylipins from other fatty acids and via cytochrome P450 enzymes were higher in males. The consistent and unique patterns of oxylipin alterations in the different models indicates the importance of these bioactive lipids in cystic renal diseases, suggesting that pharmacological agents (e.g. cyclooxygenase inhibitors) may be useful in treating these disorders, for which effective treatment remains elusive.",
author = "Md Monirujjaman and Devassy, {Jessay G.} and Tamio Yamaguchi and Nikhil Sidhu and Masanori Kugita and Melissa Gabbs and Shizuko Nagao and Jing Zhou and Amir Ravandi and Aukema, {Harold M.}",
year = "2017",
month = "12",
day = "1",
doi = "10.1016/j.bbalip.2017.08.005",
language = "English",
volume = "1862",
pages = "1562--1574",
journal = "Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids",
issn = "1388-1981",
publisher = "Elsevier",
number = "12",

}

Monirujjaman, M, Devassy, JG, Yamaguchi, T, Sidhu, N, Kugita, M, Gabbs, M, Nagao, S, Zhou, J, Ravandi, A & Aukema, HM 2017, 'Distinct oxylipin alterations in diverse models of cystic kidney diseases', Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids, vol. 1862, no. 12, pp. 1562-1574. https://doi.org/10.1016/j.bbalip.2017.08.005

Distinct oxylipin alterations in diverse models of cystic kidney diseases. / Monirujjaman, Md; Devassy, Jessay G.; Yamaguchi, Tamio; Sidhu, Nikhil; Kugita, Masanori; Gabbs, Melissa; Nagao, Shizuko; Zhou, Jing; Ravandi, Amir; Aukema, Harold M.

In: Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids, Vol. 1862, No. 12, 01.12.2017, p. 1562-1574.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Distinct oxylipin alterations in diverse models of cystic kidney diseases

AU - Monirujjaman, Md

AU - Devassy, Jessay G.

AU - Yamaguchi, Tamio

AU - Sidhu, Nikhil

AU - Kugita, Masanori

AU - Gabbs, Melissa

AU - Nagao, Shizuko

AU - Zhou, Jing

AU - Ravandi, Amir

AU - Aukema, Harold M.

PY - 2017/12/1

Y1 - 2017/12/1

N2 - Cystic kidney diseases are characterized by multiple renal cysts and are the leading cause of inherited renal disease. Oxylipins are bioactive lipids derived from fatty acids formed via cyclooxygenase, lipoxygenase and cytochrome P450 activity, and are important regulators of renal health and disease. Oxylipins are altered in nephronophthisis, a type of cystic kidney disease. To further investigate and to determine whether other cystic renal diseases share these abnormalities, a targeted lipidomic analysis of renal oxylipins was performed in orthologous models of autosomal dominant polycystic kidney disease 1 (Mx1Cre+ Pkd1flox/flox mouse) and 2 (Pkd2ws25/− mouse), autosomal recessive polycystic kidney disease (PCK rat) and nephronophthisis (jck/jck mouse). Kidney cyclooxygenase oxylipins were consistently higher in all diseased kidneys, even in very early stage disease. On the other hand, cytochrome P450 epoxygenase derived oxylipins were lower only in the autosomal recessive polycystic kidney disease and nephronophthisis models, while lipoxygenase and cytochrome P450 hydroxylase derived oxylipins were lower only in nephronophthisis. Sex effects on renal oxylipin alterations were observed but they did not always coincide with sex effects on disease. For oxylipins with sex effects, arachidonic acid derived oxylipins formed via cyclooxygenases and lipoxygenases were higher in females, while oxylipins from other fatty acids and via cytochrome P450 enzymes were higher in males. The consistent and unique patterns of oxylipin alterations in the different models indicates the importance of these bioactive lipids in cystic renal diseases, suggesting that pharmacological agents (e.g. cyclooxygenase inhibitors) may be useful in treating these disorders, for which effective treatment remains elusive.

AB - Cystic kidney diseases are characterized by multiple renal cysts and are the leading cause of inherited renal disease. Oxylipins are bioactive lipids derived from fatty acids formed via cyclooxygenase, lipoxygenase and cytochrome P450 activity, and are important regulators of renal health and disease. Oxylipins are altered in nephronophthisis, a type of cystic kidney disease. To further investigate and to determine whether other cystic renal diseases share these abnormalities, a targeted lipidomic analysis of renal oxylipins was performed in orthologous models of autosomal dominant polycystic kidney disease 1 (Mx1Cre+ Pkd1flox/flox mouse) and 2 (Pkd2ws25/− mouse), autosomal recessive polycystic kidney disease (PCK rat) and nephronophthisis (jck/jck mouse). Kidney cyclooxygenase oxylipins were consistently higher in all diseased kidneys, even in very early stage disease. On the other hand, cytochrome P450 epoxygenase derived oxylipins were lower only in the autosomal recessive polycystic kidney disease and nephronophthisis models, while lipoxygenase and cytochrome P450 hydroxylase derived oxylipins were lower only in nephronophthisis. Sex effects on renal oxylipin alterations were observed but they did not always coincide with sex effects on disease. For oxylipins with sex effects, arachidonic acid derived oxylipins formed via cyclooxygenases and lipoxygenases were higher in females, while oxylipins from other fatty acids and via cytochrome P450 enzymes were higher in males. The consistent and unique patterns of oxylipin alterations in the different models indicates the importance of these bioactive lipids in cystic renal diseases, suggesting that pharmacological agents (e.g. cyclooxygenase inhibitors) may be useful in treating these disorders, for which effective treatment remains elusive.

UR - http://www.scopus.com/inward/record.url?scp=85029580702&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85029580702&partnerID=8YFLogxK

U2 - 10.1016/j.bbalip.2017.08.005

DO - 10.1016/j.bbalip.2017.08.005

M3 - Article

C2 - 28826940

AN - SCOPUS:85029580702

VL - 1862

SP - 1562

EP - 1574

JO - Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids

JF - Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids

SN - 1388-1981

IS - 12

ER -