DNA polymerase α overcomes an error-prone pause site in the presence of replication protein-A

Motoshi Suzuki, Shunji Izuta, Shonen Yoshida

Research output: Contribution to journalArticle

17 Citations (Scopus)

Abstract

Eukaryotic DNA polymerase α pauses at some sites on the natural DNA template of M13mp2. Terminal misincorporations of dA or dG, in place of dT, by DNA polymerase α have been reported to be within one of the pause sites, pause site II (positions 6269 and 6270 (Fry, M., and Loeb, L. A. (1992) Proc. Natl. Acad. Sci. U. S. A. 89, 763-767)). The DNA products arrested within pause site II (position 6270) were separated, annealed with synthetic templates, and further elongated by DNA polymerase α. It was confirmed that a considerable amount of terminal misincorporation of dG in place of dT occurred at this position. When M13mp2 DNA was coated with various amounts of replication protein-A (RP-A), however, DNA polymerase α was able to overcome the pause site II, whereas pause bands at other sites barely decreased. In contrast, Escherichia coli single-stranded DNA-binding protein did not specifically abolish the arrested band at pause site II, though it generally suppressed the reaction. Since RP-A hardly increased the elongation frequency from the primer carrying a 3'-mismatched terminal deoxynucleotide, the reduction of arrested products by RP-A may be attributed to the change in the incorporation mode from noncomplementary to complementary deoxynucleotides within pause site II and may not be due to the reinitiation from the mismatched 3'-terminal deoxynucleotide. To confirm this, we amplified the reaction products at pause site III by means of a polymerase chain reaction method and showed that the complementary strand to pause site II, which was elongated in the presence of RP-A, did not carry any detectable misinsertion. Therefore, the error-prone step of the DNA synthesis catalyzed by DNA polymerase α may be readily avoided by RP-A.

Original languageEnglish
Pages (from-to)10225-10228
Number of pages4
JournalJournal of Biological Chemistry
Volume269
Issue number14
Publication statusPublished - 08-04-1994
Externally publishedYes

Fingerprint

Replication Protein A
DNA-Directed DNA Polymerase
DNA
Polymerase chain reaction
DNA-Binding Proteins
Reaction products
Escherichia coli
Elongation
Polymerase Chain Reaction

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Cite this

@article{57138a73996e43fdad0bf9fe8fdd1062,
title = "DNA polymerase α overcomes an error-prone pause site in the presence of replication protein-A",
abstract = "Eukaryotic DNA polymerase α pauses at some sites on the natural DNA template of M13mp2. Terminal misincorporations of dA or dG, in place of dT, by DNA polymerase α have been reported to be within one of the pause sites, pause site II (positions 6269 and 6270 (Fry, M., and Loeb, L. A. (1992) Proc. Natl. Acad. Sci. U. S. A. 89, 763-767)). The DNA products arrested within pause site II (position 6270) were separated, annealed with synthetic templates, and further elongated by DNA polymerase α. It was confirmed that a considerable amount of terminal misincorporation of dG in place of dT occurred at this position. When M13mp2 DNA was coated with various amounts of replication protein-A (RP-A), however, DNA polymerase α was able to overcome the pause site II, whereas pause bands at other sites barely decreased. In contrast, Escherichia coli single-stranded DNA-binding protein did not specifically abolish the arrested band at pause site II, though it generally suppressed the reaction. Since RP-A hardly increased the elongation frequency from the primer carrying a 3'-mismatched terminal deoxynucleotide, the reduction of arrested products by RP-A may be attributed to the change in the incorporation mode from noncomplementary to complementary deoxynucleotides within pause site II and may not be due to the reinitiation from the mismatched 3'-terminal deoxynucleotide. To confirm this, we amplified the reaction products at pause site III by means of a polymerase chain reaction method and showed that the complementary strand to pause site II, which was elongated in the presence of RP-A, did not carry any detectable misinsertion. Therefore, the error-prone step of the DNA synthesis catalyzed by DNA polymerase α may be readily avoided by RP-A.",
author = "Motoshi Suzuki and Shunji Izuta and Shonen Yoshida",
year = "1994",
month = "4",
day = "8",
language = "English",
volume = "269",
pages = "10225--10228",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "14",

}

DNA polymerase α overcomes an error-prone pause site in the presence of replication protein-A. / Suzuki, Motoshi; Izuta, Shunji; Yoshida, Shonen.

In: Journal of Biological Chemistry, Vol. 269, No. 14, 08.04.1994, p. 10225-10228.

Research output: Contribution to journalArticle

TY - JOUR

T1 - DNA polymerase α overcomes an error-prone pause site in the presence of replication protein-A

AU - Suzuki, Motoshi

AU - Izuta, Shunji

AU - Yoshida, Shonen

PY - 1994/4/8

Y1 - 1994/4/8

N2 - Eukaryotic DNA polymerase α pauses at some sites on the natural DNA template of M13mp2. Terminal misincorporations of dA or dG, in place of dT, by DNA polymerase α have been reported to be within one of the pause sites, pause site II (positions 6269 and 6270 (Fry, M., and Loeb, L. A. (1992) Proc. Natl. Acad. Sci. U. S. A. 89, 763-767)). The DNA products arrested within pause site II (position 6270) were separated, annealed with synthetic templates, and further elongated by DNA polymerase α. It was confirmed that a considerable amount of terminal misincorporation of dG in place of dT occurred at this position. When M13mp2 DNA was coated with various amounts of replication protein-A (RP-A), however, DNA polymerase α was able to overcome the pause site II, whereas pause bands at other sites barely decreased. In contrast, Escherichia coli single-stranded DNA-binding protein did not specifically abolish the arrested band at pause site II, though it generally suppressed the reaction. Since RP-A hardly increased the elongation frequency from the primer carrying a 3'-mismatched terminal deoxynucleotide, the reduction of arrested products by RP-A may be attributed to the change in the incorporation mode from noncomplementary to complementary deoxynucleotides within pause site II and may not be due to the reinitiation from the mismatched 3'-terminal deoxynucleotide. To confirm this, we amplified the reaction products at pause site III by means of a polymerase chain reaction method and showed that the complementary strand to pause site II, which was elongated in the presence of RP-A, did not carry any detectable misinsertion. Therefore, the error-prone step of the DNA synthesis catalyzed by DNA polymerase α may be readily avoided by RP-A.

AB - Eukaryotic DNA polymerase α pauses at some sites on the natural DNA template of M13mp2. Terminal misincorporations of dA or dG, in place of dT, by DNA polymerase α have been reported to be within one of the pause sites, pause site II (positions 6269 and 6270 (Fry, M., and Loeb, L. A. (1992) Proc. Natl. Acad. Sci. U. S. A. 89, 763-767)). The DNA products arrested within pause site II (position 6270) were separated, annealed with synthetic templates, and further elongated by DNA polymerase α. It was confirmed that a considerable amount of terminal misincorporation of dG in place of dT occurred at this position. When M13mp2 DNA was coated with various amounts of replication protein-A (RP-A), however, DNA polymerase α was able to overcome the pause site II, whereas pause bands at other sites barely decreased. In contrast, Escherichia coli single-stranded DNA-binding protein did not specifically abolish the arrested band at pause site II, though it generally suppressed the reaction. Since RP-A hardly increased the elongation frequency from the primer carrying a 3'-mismatched terminal deoxynucleotide, the reduction of arrested products by RP-A may be attributed to the change in the incorporation mode from noncomplementary to complementary deoxynucleotides within pause site II and may not be due to the reinitiation from the mismatched 3'-terminal deoxynucleotide. To confirm this, we amplified the reaction products at pause site III by means of a polymerase chain reaction method and showed that the complementary strand to pause site II, which was elongated in the presence of RP-A, did not carry any detectable misinsertion. Therefore, the error-prone step of the DNA synthesis catalyzed by DNA polymerase α may be readily avoided by RP-A.

UR - http://www.scopus.com/inward/record.url?scp=0028283492&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0028283492&partnerID=8YFLogxK

M3 - Article

VL - 269

SP - 10225

EP - 10228

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 14

ER -