Dual regulation of the Bacillus subtilis regulon comprising the lmrAB and yxaGH operons and yxaF gene by two transcriptional repressors, LmrA and YxaF, in response to flavonoids

Kazutake Hirooka, Satoshi Kunikane, Hiroshi Matsuoka, Ken Ichi Yoshida, Kanako Kumamoto, Shigeo Tojo, Yasutaro Fujita

Research output: Contribution to journalArticle

24 Citations (Scopus)

Abstract

Bacillus subtilis LmrA is known to be a repressor that regulates the lmrAB and yxaGH operons; lmrB and yxaG encode a multidrug resistance pump and quercetin 2,3-dioxygenase, respectively. DNase I footprinting analysis revealed that LmrA and YxaF, which are paralogous to each other, bind specifically to almost the same cis sequences, LmrA/YxaF boxes, located in the promoter regions of the lmrAB operon, the yxaF gene, and the yxaGH operon for their repression and containing a consensus sequence of AWTATAtagaNYGgTCTA, where W, Y, and N stand for A or T, C or T, and any base, respectively (three-out-of-four match [in lowercase type]). Gel retardation analysis indicated that out of the eight flavonoids tested, quercetin, fisetin, and catechin are most inhibitory for LmrA to DNA binding, whereas quercetin, fisetin, tamarixetin, and galangin are most inhibitory for YxaF. Also, YxaF bound most tightly to the tandem LmrA/YxaF boxes in the yxaGH promoter region. The lacZ fusion experiments essentially supported the above-mentioned in vitro results, except that galangin did not activate the lmrAB and yxaGH promoters, probably due to its poor incorporation into cells. Thus, the LmrA/YxaF regulon presumably comprising the lmrAB operon, the yxaF gene, and the yxaGH operon is induced in response to certain flavonoids. The in vivo experiments to examine the regulation of the synthesis of the reporter β-galactosidase and quercetin 2,3-dioxgenase as well as that of multidrug resistance suggested that LmrA represses the lmrAB and yxaGH operons but that YxaF represses yxaGH more preferentially.

Original languageEnglish
Pages (from-to)5170-5182
Number of pages13
JournalJournal of Bacteriology
Volume189
Issue number14
DOIs
Publication statusPublished - 01-07-2007

Fingerprint

Regulon
Operon
Bacillus subtilis
Flavonoids
Quercetin
Genes
quercetin 2,3-dioxygenase
Multiple Drug Resistance
Genetic Promoter Regions
Galactosidases
Catechin
Deoxyribonuclease I
Consensus Sequence
Gels
DNA

All Science Journal Classification (ASJC) codes

  • Microbiology
  • Molecular Biology

Cite this

Hirooka, Kazutake ; Kunikane, Satoshi ; Matsuoka, Hiroshi ; Yoshida, Ken Ichi ; Kumamoto, Kanako ; Tojo, Shigeo ; Fujita, Yasutaro. / Dual regulation of the Bacillus subtilis regulon comprising the lmrAB and yxaGH operons and yxaF gene by two transcriptional repressors, LmrA and YxaF, in response to flavonoids. In: Journal of Bacteriology. 2007 ; Vol. 189, No. 14. pp. 5170-5182.
@article{34c2d8e4ebb644e2bb43306c74346c3a,
title = "Dual regulation of the Bacillus subtilis regulon comprising the lmrAB and yxaGH operons and yxaF gene by two transcriptional repressors, LmrA and YxaF, in response to flavonoids",
abstract = "Bacillus subtilis LmrA is known to be a repressor that regulates the lmrAB and yxaGH operons; lmrB and yxaG encode a multidrug resistance pump and quercetin 2,3-dioxygenase, respectively. DNase I footprinting analysis revealed that LmrA and YxaF, which are paralogous to each other, bind specifically to almost the same cis sequences, LmrA/YxaF boxes, located in the promoter regions of the lmrAB operon, the yxaF gene, and the yxaGH operon for their repression and containing a consensus sequence of AWTATAtagaNYGgTCTA, where W, Y, and N stand for A or T, C or T, and any base, respectively (three-out-of-four match [in lowercase type]). Gel retardation analysis indicated that out of the eight flavonoids tested, quercetin, fisetin, and catechin are most inhibitory for LmrA to DNA binding, whereas quercetin, fisetin, tamarixetin, and galangin are most inhibitory for YxaF. Also, YxaF bound most tightly to the tandem LmrA/YxaF boxes in the yxaGH promoter region. The lacZ fusion experiments essentially supported the above-mentioned in vitro results, except that galangin did not activate the lmrAB and yxaGH promoters, probably due to its poor incorporation into cells. Thus, the LmrA/YxaF regulon presumably comprising the lmrAB operon, the yxaF gene, and the yxaGH operon is induced in response to certain flavonoids. The in vivo experiments to examine the regulation of the synthesis of the reporter β-galactosidase and quercetin 2,3-dioxgenase as well as that of multidrug resistance suggested that LmrA represses the lmrAB and yxaGH operons but that YxaF represses yxaGH more preferentially.",
author = "Kazutake Hirooka and Satoshi Kunikane and Hiroshi Matsuoka and Yoshida, {Ken Ichi} and Kanako Kumamoto and Shigeo Tojo and Yasutaro Fujita",
year = "2007",
month = "7",
day = "1",
doi = "10.1128/JB.00079-07",
language = "English",
volume = "189",
pages = "5170--5182",
journal = "Journal of Bacteriology",
issn = "0021-9193",
publisher = "American Society for Microbiology",
number = "14",

}

Dual regulation of the Bacillus subtilis regulon comprising the lmrAB and yxaGH operons and yxaF gene by two transcriptional repressors, LmrA and YxaF, in response to flavonoids. / Hirooka, Kazutake; Kunikane, Satoshi; Matsuoka, Hiroshi; Yoshida, Ken Ichi; Kumamoto, Kanako; Tojo, Shigeo; Fujita, Yasutaro.

In: Journal of Bacteriology, Vol. 189, No. 14, 01.07.2007, p. 5170-5182.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Dual regulation of the Bacillus subtilis regulon comprising the lmrAB and yxaGH operons and yxaF gene by two transcriptional repressors, LmrA and YxaF, in response to flavonoids

AU - Hirooka, Kazutake

AU - Kunikane, Satoshi

AU - Matsuoka, Hiroshi

AU - Yoshida, Ken Ichi

AU - Kumamoto, Kanako

AU - Tojo, Shigeo

AU - Fujita, Yasutaro

PY - 2007/7/1

Y1 - 2007/7/1

N2 - Bacillus subtilis LmrA is known to be a repressor that regulates the lmrAB and yxaGH operons; lmrB and yxaG encode a multidrug resistance pump and quercetin 2,3-dioxygenase, respectively. DNase I footprinting analysis revealed that LmrA and YxaF, which are paralogous to each other, bind specifically to almost the same cis sequences, LmrA/YxaF boxes, located in the promoter regions of the lmrAB operon, the yxaF gene, and the yxaGH operon for their repression and containing a consensus sequence of AWTATAtagaNYGgTCTA, where W, Y, and N stand for A or T, C or T, and any base, respectively (three-out-of-four match [in lowercase type]). Gel retardation analysis indicated that out of the eight flavonoids tested, quercetin, fisetin, and catechin are most inhibitory for LmrA to DNA binding, whereas quercetin, fisetin, tamarixetin, and galangin are most inhibitory for YxaF. Also, YxaF bound most tightly to the tandem LmrA/YxaF boxes in the yxaGH promoter region. The lacZ fusion experiments essentially supported the above-mentioned in vitro results, except that galangin did not activate the lmrAB and yxaGH promoters, probably due to its poor incorporation into cells. Thus, the LmrA/YxaF regulon presumably comprising the lmrAB operon, the yxaF gene, and the yxaGH operon is induced in response to certain flavonoids. The in vivo experiments to examine the regulation of the synthesis of the reporter β-galactosidase and quercetin 2,3-dioxgenase as well as that of multidrug resistance suggested that LmrA represses the lmrAB and yxaGH operons but that YxaF represses yxaGH more preferentially.

AB - Bacillus subtilis LmrA is known to be a repressor that regulates the lmrAB and yxaGH operons; lmrB and yxaG encode a multidrug resistance pump and quercetin 2,3-dioxygenase, respectively. DNase I footprinting analysis revealed that LmrA and YxaF, which are paralogous to each other, bind specifically to almost the same cis sequences, LmrA/YxaF boxes, located in the promoter regions of the lmrAB operon, the yxaF gene, and the yxaGH operon for their repression and containing a consensus sequence of AWTATAtagaNYGgTCTA, where W, Y, and N stand for A or T, C or T, and any base, respectively (three-out-of-four match [in lowercase type]). Gel retardation analysis indicated that out of the eight flavonoids tested, quercetin, fisetin, and catechin are most inhibitory for LmrA to DNA binding, whereas quercetin, fisetin, tamarixetin, and galangin are most inhibitory for YxaF. Also, YxaF bound most tightly to the tandem LmrA/YxaF boxes in the yxaGH promoter region. The lacZ fusion experiments essentially supported the above-mentioned in vitro results, except that galangin did not activate the lmrAB and yxaGH promoters, probably due to its poor incorporation into cells. Thus, the LmrA/YxaF regulon presumably comprising the lmrAB operon, the yxaF gene, and the yxaGH operon is induced in response to certain flavonoids. The in vivo experiments to examine the regulation of the synthesis of the reporter β-galactosidase and quercetin 2,3-dioxgenase as well as that of multidrug resistance suggested that LmrA represses the lmrAB and yxaGH operons but that YxaF represses yxaGH more preferentially.

UR - http://www.scopus.com/inward/record.url?scp=34447511578&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=34447511578&partnerID=8YFLogxK

U2 - 10.1128/JB.00079-07

DO - 10.1128/JB.00079-07

M3 - Article

C2 - 17483215

AN - SCOPUS:34447511578

VL - 189

SP - 5170

EP - 5182

JO - Journal of Bacteriology

JF - Journal of Bacteriology

SN - 0021-9193

IS - 14

ER -