Abstract
Accumulations of β-amyloid protein are characteristic and diagnostic features of the brain of Alzheimer's disease patients; however, the physiological role of this protein in CNS is unknown. We have previously reported that continuous infusion of β-amyloid protein into rat cerebral ventricle impairs learning ability and decreases choline acetyltransferase activity, a marker enzyme of cholinergic neuron. In this study, the effects of β-amyloid protein infusion on the release of neurotransmitters in cholinergic and dopaminergic neuronal systems were investigated by using an in vivo brain microdialysis method. Nicotine-stimulated release of acetylcholine and dopamine in these animals was significantly lower than that in vehicle-infused rats. Further, dopamine release induced by high-K stimulation was decreased in β-amyloid protein-infused rats compared with vehicle-infused rats. These results suggest that the release of the two transmitters, acetylcholine and dopamine, was decreased by β-amyloid protein and that learning deficits observed in the β-amyloid protein-infused rats are partly due to the impairment of neurotransmitter release. Furthermore, continuous infusion of β-amyloid protein may be a useful method to produce the animal model of Alzheimer's disease.
Original language | English |
---|---|
Pages (from-to) | 1113-1117 |
Number of pages | 5 |
Journal | Journal of neurochemistry |
Volume | 66 |
Issue number | 3 |
Publication status | Published - 01-03-1996 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Biochemistry
- Cellular and Molecular Neuroscience