Ectopic expression of KNOTTED1-like homeobox protein induces expression of cytokinin biosynthesis genes in rice

Tomoaki Sakamoto, Hitoshi Sakakibara, Mikiko Kojima, Yuko Yamamoto, Hiroshi Nagasaki, Yoshiaki Inukai, Yutaka Sato, Makoto Matsuoka

Research output: Contribution to journalArticlepeer-review

154 Citations (Scopus)

Abstract

Some phytohormones such as gibberellins (GAs) and cytokinins (CKs) are potential targets of the KNOTTED1-like homeobox (KNOX) protein. To enhance our understanding of KNOX protein function in plant development, we identified rice (Oryza sativa) genes for adenosine phosphate isopentenyltransferase (IPT), which catalyzes the rate-limiting step of CK biosynthesis. Molecular and biochemical studies revealed that there are eight IPT genes, OsIPT1 to OsIPT8, in the rice genome, including a pseudogene, OsIPT6. Overexpression of OsIPTs in transgenic rice inhibited root development and promoted axillary bud growth, indicating that OsIPTs are functional in vivo. Phenotypes of OsIPT overexpressers resembled those of KNOX-overproducing transgenic rice, although OsIPT overexpressers did not form roots or ectopic meristems, both of which are observed in KNOX overproducers. Expression of two OsIPT genes, OsIPT2 and OsIPT3, was up-regulated in response to the induction of KNOX protein function with similar kinetics to those of down-regulation of GA 20-oxidase genes, target genes of KNOX proteins in dicots. However, expression of these two OsIPT genes was not regulated in a feedback manner. These results suggest that OsIPT2 and OsIPT3 have unique roles in the developmental process, which is controlled by KNOX proteins, rather than in the maintenance of bioactive CK levels in rice. On the basis of these findings, we concluded that KNOX protein simultaneously decreases GA biosynthesis and increases de novo CK biosynthesis through the induction of OsIPT2 and OsIPT3 expression, and the resulting high-CK and low-GA condition is required for formation and maintenance of the meristem.

Original languageEnglish
Pages (from-to)54-62
Number of pages9
JournalPlant Physiology
Volume142
Issue number1
DOIs
Publication statusPublished - 09-2006

All Science Journal Classification (ASJC) codes

  • Physiology
  • Genetics
  • Plant Science

Fingerprint Dive into the research topics of 'Ectopic expression of KNOTTED1-like homeobox protein induces expression of cytokinin biosynthesis genes in rice'. Together they form a unique fingerprint.

Cite this